ION CHANNELS

Acid-sensing (proton-gated) ion channels (ASICs)

Overview: Acid-sensing ion channels (ASICs, provisional nomenclature) are members of a Na⁺ channel superfamily that includes the epithelial Na channel, ENaC, the FMRF-amide activated channel of *Helix aspersa*, the degenerins (DEG) of *Caenorhabitis elegans* (see Waldmann & Lazdunski, 1998; Mano & Discoll, 1999) and 'orphan' channels that include BLINaC (Sakai *et al.*, 1999) and INaC (Schaefer *et al.*, 2000). ASIC subunits contain two putative TM domains and assemble as homo- or heterotetramers to form proton-gated, Na⁺ permeable channels. Splice variants of ASIC1 (provisionally termed ASIC1a (ASIC-α) (Waldmann *et al.*, 1997a) and ASIC1b (ASIC-β) (Chen *et al.*, 1998)) and ASIC2 (provisionally termed ASIC2a (MDEG1) and ASIC2b (MDEG2); Lingueglia *et al.*, 1997) have been cloned. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H⁺-gated currents. Transcripts encoding a fourth member of the ASIC family (ASIC4/SPASIC) do not produce a proton-gated channel in heterologous expression systems (Akopian *et al.*, 2000; Grunder *et al.*, 2000). ASIC channels are expressed in central and peripheral neurons and particularly in nociceptors where they participate in neuronal sensitivity to acidosis. The relationship of the cloned ASICs to endogenously expressed proton-gated ion channels is becoming established (Escoubas *et al.*, 2000; Sutherland *et al.*, 2001; Wemmie *et al.*, 2002; 2003). Heterologously expressed heteromutimers of ASIC1/ASIC2a, ASIC2a/ASIC2b, ASIC2a/ASIC3 ASIC2b/ASIC3 and ASIC1a/ASIC3 form ion channels with altered kinetics, ion selectivity, pH-sensitivity and sensitivity to block by Gd³⁺ (Bassilana *et al.*, 1997; Lingueglia *et al.*, 1997; Babinski *et al.*, 2000; Escoubas *et al.*, 2000). Channels assembled from ASIC2b/ASIC3 subunits support biphasic current responses, mediated by transient Na⁺-selective and sustained nonselective cation conductances, which resemble a biphasic proton-activated current recorded from a subset of dorsal root ganglion

Nomenclature	ASIC1	ASIC2	ASIC3
Other names	ASIC; BNC2; BnaC2	BNC1; BnaC1; MDEG1	DRASIC
Ensembl ID	ENSG00000110881	ENSG00000108684	ENSG00000164881
Endogenous activators	Extracellular H ⁺	Extracellular H ⁺ (pEC ₅₀ ≈4.4)	Extracellular H+
	(ASIC1a, pEC ₅₀ \approx 6.6;		(transient component pEC ₅₀ = 6.2)
	ASIC1b, pEC ₅₀ \approx 5.9)		(sustained component pEC ₅₀ = 4.3)
Blockers (IC ₅₀)	Psalmotoxin I (0.9 nm),	Amiloride (28 μM)	Amiloride $(16-63 \mu\text{M})$
	amiloride ($10 \mu M$),		(transient component only),
	EIPA, benzamil $(10 \mu\text{M})$,		diclofenac (92 μ M), salicylic acid (260 μ M),
	flurbiprofen (350 μM), ibuprofen		aspirin (sustained component only)
Functional characteristics	$\gamma \sim 14 \text{ pS}; \ P_{\text{Na}}/P_{\text{K}} = 13,$	$\gamma \sim 11 \text{ pS}; P_{\text{Na}}/P_{\text{K}} = 10,$	$\gamma \sim 13 - 15 \mathrm{pS}$; biphasic response;
	$P_{\rm Na}/P_{\rm Ca} = 2.5;$	$P_{\text{Na}}/P_{\text{Ca}} = 20$; rapid activation rate,	rapidly inactivating transient
	rapid activation and	moderate inactivation rate	and sustained components
	inactivation rates		

Psalmotoxin blocks ASIC1a, but has little effect upon ASIC1b, ASIC2a, ASIC3 or ASIC1a expressed as a heteromultimer with either ASIC2a, or ASIC3 (Escoubas et al., 2000). The pEC₅₀ values for proton activation of ASIC1a, ASIC1b and ASIC3 are shifted to more acidic levels by increasing [Ca²⁺]_o (Babini et al., 2002; Immke & McCleskey, 2003). Rapid acidification is required for activation of ASIC1 and ASIC3 due to fast inactivation/desensitization. ASIC3 mediates a biphasic response to acidic pH consisting of rapidly inactivating transient and sustained currents; only the former is blocked by amiloride. The transient component appears partially inactivated at physiological pH (7.2). The pEC₅₀ values for H⁺ activation of either component vary in the literature and may reflect species and/or methodological differences (Waldmann et al., 1997b; de Weille et al., 1998; Babinski et al., 1999). The transient and sustained current components mediated by rASIC3 are highly selective for Na⁺ (Waldmann et al., 1997b); for hASIC3 the transient component is Na⁺ selective, whereas the sustained current appears nonselective ($P_{Na}/P_K = 1.6$) (de Weille et al., 1998; Babinski et al., 1999). Nonsteroidal anti-inflammatory drugs (NSAIDs) are direct blockers of ASIC currents within the therapeutic range of concentrations (Voilley et al., 2001). ASIC1a is blocked by flurbiprofen and ibuprofen and currents mediated by ASIC3 are inhibited by salicylic acid, aspirin and diclofenac. Extracellular Zn²⁺ potentiates proton activation of homomeric and heteromeric channels incorporating ASIC2a, but not homomeric ASIC1a or ASIC3 channels (Baron et al., 2001). The peptide FMRFamide acts upon ASIC1a, ASIC1b and ASIC3, but not ASIC2, to slow inactivation and induce/potentiate a sustained current during acidification (Askwith et al., 2000). In native receptors, the presence of ASIC3 within the receptor complex confers sensitivity to FMRF (Xie et al., 2003). Neuropeptides FF and SF slow the inactivation kinetics of ASIC3 (Askwith

Abbreviations: EIPA, ethylisopropylamiloride; FMRFamide, Phe-Met-Arg-Phe-amide; Neuropeptide FF, Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide; Neuropeptide SF, Ser-Leu-Ala-Pro-Gln-Arg-Phe-amide

Further Reading:

KRESS, M. & ZEILHOFER, H.U. (1999). Capsaicin, protons and heat: new excitement about nociceptors. Trends Pharmacol. Sci., 20, 112-118.

KRISHTAL, O. (2003). The ASICs: signaling molecules? Modulators? Trends Neurosci., 26, 477-483.

MANO, I. & DISCOLL. M. (1999). DEG/ENaC channels: a touchy superfamily that watches its salt. BioEssays, 21, 568-578.

REEH, P.W. & KRESS, M. (2001). Molecular physiology of proton transduction in nociceptors. Curr. Opin. Pharmacol., 1, 45-51.

SUTHERLAND, S.P., COOK, S.P. & MCCLESKEY, E.W. (2000). Chemical mediators of pain due to tissue damage and ischemia. *Prog. Brain Res.*, 129, 21–38.

WALDMANN, R. & LAZDUNSKI, M. (1998). H⁺-gated cation channels: neuronal acid sensors in the ENaC/DEG family of ion channels *Curr. Opin. Neurobiol.*, **8**, 418–424.

WALDMANN, R. (2001). Proton-gated cation channels-neuronal acid sensors in the central and peripheral nervous system. Adv. Exp. Med. Biol., 502, 293-304.

References

AKOPIAN, A.N. et al. (2000). Neuroreport, 11, 2217-2222.

ASKWITH, C.C. et al. (2000). Neuron, 26, 133-141.

BABINI, E. et al. (2002). J. Biol. Chem., 277, 41597-41603.

BABINSKI, K. et al. (1999). J. Neurochem., 72, 51-57.

BABINSKI, K. et al. (2000). J. Biol. Chem., 37, 28519–28525.

BARON, A. et al. (2001). J. Biol. Chem., 276, 35361-35367.

BASSILANA, F. et al. (1997). J. Biol. Chem., 272, 28819-28822.

BEVAN, S. & YEATS, J. (1991). J. Physiol. (London), 433, 145-161.

CHAMPIGNY, G. et al. (1998). J. Biol. Chem., 273, 15418-15422.

CHEN, C.-C. et al. (1998). Proc. Natl. Acad. Sci. U.S.A., 95, 10240-10245.

COSCOY, S. et al. (1999). J. Biol. Chem., 274, 10129-10132.

DE WEILLE, J.R. et al. (1998). FEBS Lett., 433, 257-260.

DEVAL, E. et al. (2003). Neuropharmacology, 44, 662-671.

ESCOUBAS, P. et al. (2000). J. Biol. Chem., 275, 25116-25121.

GARCIA-ANOVEROS, J. et al. (1997). Proc. Natl. Acad. Sci. U.S.A., 94, 1459-1464.

GRUNDER, S. et al. (2000). Neuroreport, 11, 1607–1611.

IMMKE, D.C. & MCCLESKEY, E.W. (2003). Neuron, 37, 75-84.

ISHIBASHI, K. & MARUMO, F. (1998). Biochem. Biophys. Res. Commun., 245, 589-593.

LINGUEGLIA, E. et al. (1997). J. Biol. Chem., 272, 29778-29783.

MAMET, J. et al. (2002). J. Neurosci., 22, 10662-10670.

SAKAI, H. et al. (1999). J. Physiol. (London), 519, 323-333.

SCHAEFER, L. et al. (2000). FEBS Lett., 471, 205-210.

SUTHERLAND, S.P. et al. (2001). Proc. Natl. Acad. Sci. U.S.A., 98, 711-716.

VOILLEY, N. et al. (2001). J. Neurosci., 21, 8026-8033.

WALDMANN, R. et al. (1997a). Nature, 386, 173-177.

WALDMANN. R. et al. (1997b). J. Biol. Chem., 272, 20975-20978.

WEMMIE, J.A. et al. (2002). Neuron, 34, 463-477.

WEMMIE, J.A. et al. (2003). J. Neurosci., 23, 5496-5502.

XIE, J. et al. (2003). J. Neurophysiol., 89, 2459-2465.

Calcium channels (voltage-gated)

Overview: Calcium (Ca^{2+}) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca^{2+} channels was proposed by Ertel *et al.* (2000) and approved by the NC-IUPHAR subcommittee on Ca^{2+} channels (Catterall *et al.*, 2002; 2003). Ca^{2+} channels form heterooligomeric complexes. The α 1 subunit is pore-forming and provides the extracellular binding site(s) for practically all agonists and antagonists. The 10 cloned α -subunits can be grouped into three families: (1) the high voltage-activated dihydropyridine-sensitive ($Ca_v 2.x$) channels and (3) the low voltage-activated (T-type, $Ca_v 3.x$) channels. Each α 1 subunit has four homologous repeats (I-IV), each repeat having six TM domains and a pore-forming region between TM domains S5 and S6. Gating is thought to be associated with the membrane spanning S4 segment, which contains highly conserved positive charges. Many of the α 1-subunit genes give rise to alternatively spliced products. At least for high voltage-activated channels, it is likely that native channels comprise coassemblies of α 1, β and α 2- δ subunits. The γ subunits have not been proven to associate with channels other than α 1s. The α 2- δ 1 and α 2- δ 2 subunits bind gabapentin and pregabalin.

Nomenclature	Ca _V 1.1	Ca _V 1.2	Ca _v 1.3	Ca _v 1.4	Ca _v 2.1
Alternative names	L-type, α_{1S} , skeletal muscle L	L-type, α_{1C} , cardiac or smooth muscle L	L-type, α_{1D}	L-type, α_{1F}	P-type, Q-type, α_{1a}
Ensembl ID	ENSG00000081248	ENSG00000151067	ENSG00000157388	ENSG00000102001	ENSG00000141837
Activators	(-)-(S)-BayK8644	(-)-(S)-BayK8644	(-)-(S)-BayK8644	(-)-(S)-BayK8644	
	SZ(+)-(S)-202-791	SZ(+)-(S)-202-791			
	FPL64176	FPL64176			
Blockers	Dihydropyridine	Dihydropyridine	Less sensitive to	less sensitive to	ω-agatoxin IVA
	antagonists,	antagonists,	dihydropyridine	dihydropyridine	(P: $IC_{50} \sim 1 \text{ nM}$)
	for example, nifedipine,	for example, nifedipine,	antagonists,	antagonists	(Q: $IC_{50} \sim 90 \text{nM}$)
	diltiazem,	diltiazem, verapamil,	verapamil	_	ω-agatoxin IVB,
	verapamil, calciseptine	calciseptine	•		ω-conotoxin MVIIC
Functional	High voltage-activated,	High voltage-activated,	Low-moderate	Moderate voltage-activated,	Moderate voltage-activated,
characteristics	slow inactivation	slow inactivation	voltage-activated,	slow inactivation	moderate inactivation
		(Ca ²⁺ dependent)	slow inactivation	(Ca ²⁺ independent)	
		- /	(Ca2+ dependent)	- ,	

Nomenclature	Ca _v 2.2	Ca _V 2.3	Ca _v 3.1	Ca _v 3.2	Ca _v 3.3
Alternative	N-type, α _{1B}	R-type, α_{1E}	T-type, α_{1G}	T-type, α _{1H}	T-type, α ₁₁
names					
Ensembl ID	ENSG00000148408	ENSG00000034827	ENSG00000006283	ENSG00000073761	_
Blockers	ω-conotoxin GVIA,	SNX482 (may not be	Mibefradil, low	Mibefradil,	Mibefradi, low
	ω-conotoxin MVIIC	completely specific),	sens. to Ni ²⁺ ,	high sens. to Ni2+,	sens. to Ni ²⁺ ,
		high Ni ²⁺	kurtoxin, SB-209712	kurtoxin, SB-209712	kurtoxin, SB-209712
Functional	High voltage-activated,	Moderate voltage-activated,	Low voltage-activated,	Low voltage-activated,	Low voltage-activated,
characteristics	moderate inactivation	fast inactivation	fast inactivation	fast inactivation	moderate inactivation

In many cell types, P and Q current components cannot be adequately separated and many researchers in the field have adopted the terminology 'P/Q-type' current when referring to either component.

Further Reading:

CATTERALL, W.A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Ann. Rev. Cell Dev. Biol., 16, 521-555.

CATTERALL, W.A., STRIESSNIG, J., SNUTCH, T.P. & PEREZ-REYES, E. (2002). Voltage-gated calcium channels. In: *The IUPHAR Compendium of Voltage-Gated Ion Channels*. eds. Catterall, W.A., Chandy, K.G. & Gutman, G.A. pp. 31–56. Leeds, IUPHAR Media.

CATTERALL, W.A., STRIESSNIG, J., SNUTCH, T.P. & PEREZ-REYES, E. (2003). International union of pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. *Pharmacol. Rev.*, **55**, 579–581.

DOLPHIN, A.C. (2003). G protein modulation of voltage-gated calcium channels. Pharmacol. Rev., 55, 607-627.

ERTEL, E.A., CAMPBELL, K.P., HARPOLD, M.M., HOFMANN, F., MORI, Y., PEREZ-REYES, E., SCHWARTZ, A., SNUTCH, T.P., TANABE, T., BIRNBAUMER, L., TSIEN, R.W. & CATTERALL, W.A. (2000). Nomenclature of voltage-gated calcium channels. *Neuron*, **25**, 533–535.

HOFMANN, F., LACINOVA, L. & KLUGBAUER, N. (1999). Voltage-dependent calcium channels; from structure to function. *Rev. Physiol. Biochem. Pharmacol.*, 130, 35–87

KOCHEGAROV, A.A. (2003). Pharmacological modulators of voltage-gated calcium channels and their therapeutic application. Cell Calcium, 33, 145-162.

KOSTYUK, P.G. (1999). Low-voltage-activated calcium channels: achievements and problems. Neuroscience, 92, 1157-1163.

LEWIS, R.J. & GARCIA, M.L. (2003). Therapeutic potential of venom peptides. Nat. Rev. Drug Discov., 2, 790-802.

PEREZ-REYES, E. (2003). Molecular physiology of low-voltage-activated T-type calcium channels. *Physiol. Rev.*, 83, 117–161.

TRIGGLE, D.J. (1999). The pharmacology of ion channels: with particular reference to voltage-gated Ca²⁺ channels. Eur. J. Pharmacol., 375, 311-325.

WALKER, D. & DEWAARD, M. (1998). Subunit interaction sites in voltage-dependent calcium channels. Trends Neurosci., 21, 148-154.

Alexander et al Chloride channels S75

Chloride channels

Overview: Chloride channels are a functionally and structurally diverse group of anion selective channels involved in numerous processes that include the regulation of the excitability of neurones, skeletal, cardiac and smooth muscle, cell volume regulation, transepithelial salt transport, the acidification of internal and extracellular compartments, the cell cycle and apoptosis (reviewed by Nilius & Droogmans, 2003). Excluding the transmitter-gated $GABA_A$ and glycine receptors (see separate tables), well characterised chloride channels can be classified as the voltage-sensitive CIC subfamily, calcium-activated channels, high (maxi) conductance channels, the cystic fibrosis transmembrane conductance regulator (CFTR) and volume-regulated channels. There is no official recommendation regarding the classification of chloride channels. Functional chloride channels that have been cloned from, or characterised within, mammalian tissues are listed.

CIC-family. The mammalian CIC family (reviewed by Valverde, 1999; Jentsch *et al.*, 2002; Nilius & Droogmans, 2003) contains nine members that fall into three groups; CIC-1, CIC-2, hCIC-Ka (rCIC-K1) and hCIC-Kb (rCIC-K2); CIC-3 to CIC-5, and CIC-6 and -7. CIC-1 – to CIC-5 can be functionally expressed as plasma membrane chloride channels. Similarly, CIC-Ka and CIC-Kb (largely expressed in the kidney) form functional chloride channels in association with barttin (ENSG00000162399), a 320 amino-acid 2TM protein (Estévez *et al.*, 2001). However, the location of several of these channels *in vivo* (i.e. CIC-3, CIC-4 and CIC-5) is likely to be predominantly intracellular. An intracellular location has been demonstrated for CIC-6 (ENSG0000011021) and CIC-7 (ENSG00000103249), also reviewed by Jentsch *et al.*, 1999 and Waldegger & Jentsch, 2000). Alternative splicing increases the structural diversity within the CIC family (e.g. for CIC-2, CIC-3 CIC-5 and CIC-6). The crystal structure of two bacterial CIC channels has recently been described (Dutzler *et al.*, 2002). Each CIC subunit, with a complex topology of 18 membrane-associated α-helices, contributes a single pore to a dimeric 'double-barrelled' CIC channel that contains two independently gated pores, confirming the predictions of previous functional and structural investigations (reviewed by Estévez & Jentsch, 2002).

Nomenclature	CIC-1	CIC-2	ClC-Ka	ClC-Kb
Other names	Skeletal muscle Cl ⁻ channel	_	ClC-K1 (rodent)	ClC-K2 (rodent)
Ensembl ID	ENSG00000186544	ENSG00000114859	ENSG00000186510	ENSG00000184908
Activators	_	PKA, arachidonic acid,	Constitutively active	Constitutively active
		amidation and	(when coexpressed	(when coexpressed
		acid-activated omeprazole	with barttin)	with barttin)
Blockers	S-($-$)CPP, S -($-$)CPB,	DPC, Cd ²⁺ , Zn ²⁺	Bis-phenoxy derivatives	_
	9-AC, Cd ²⁺ , Zn ²⁺		of CPP (Liantonio et al., 2002)	
Functional characteristics	$\gamma = 1 - 2 \text{ pS}$; voltage-activated	$\gamma = \sim 3 \text{ pS}$; voltage-activated	$\gamma = 1 \text{ pS}$; slight outward	$\gamma = 1 \text{ pS}$; slight outward
	(depolarization); inwardly	(hyperpolarization), inward	rectification; largely	rectification; largely
	rectifying; deactivation	rectification (steady state	time-independent currents;	time-independent currents;
	upon repolarization	currents); slow inactivation	inhibited by extracellular	inhibitied by extracellular
	(by fast gating of single	(seconds); activated by cell	acidosis; potentiated by	acidosis; potentiated by
	pores and a slower	swelling and extracellular	extracellular Ca ²⁺	extracellular Ca ²⁺
	common gate)	acidosis; inhibited by		
		phosphorylation		
		by p34(cdc2)/cyclin B		

Nomenclature	CIC-3	CIC-4	CIC-5
Ensemble ID	ENSG00000109572	ENSG00000073464	ENSG00000171365
Activators	High constitutive activity (disputed)	_	_
Blockers	DIDS (disputed), tamoxifen, (not DPC or 9-AC)	_	_
Functional characteristics	γ = 40 pS (at depolarised potentials); outward rectification; activity enhanced by cell swelling (disputed) and by CaM kinase II; inhibited by PKC activation (disputed); inactivates at positive potentials)	$\gamma \sim 3$ pS (at depolarised potentials) (disputed); extreme outward rectification (due to voltage dependence of γ ?); largely time-independent currents; inhibited by extracellular acidosis; ATP hydrolysis required for full activity	Extreme outward rectification; largely time-independent currents; inhibited by extracellular acidosis

CIC channels other than CIC-3 display the permeability sequence Cl⁻> Br²⁻> I⁻ (at physiological pH); for CIC-3, I⁻> Cl⁻. CIC-1 has significant opening probability at resting membrane potential, accounting for 75% of the membrane conductance at rest in skeletal muscle, and is important for repolarization and for stabilization of the membrane potential. S-(-)CPP and 9-AC act intracellularly and exhibit a strongly voltage-dependent block with strong inhibition at negative voltages and relief of block at depolarized potentials (reviewed by Pusch et al., 2002). Mutations in the CIC-1 gene result in myotonia congenita that can be either autosomal dominant (Thomsen's disease) or recessive (Becker myotonia) depending on the functional effect of the mutation (shift in voltage-dependence versus loss -of function). Although ClC-2 can be activated by cell swelling, its anion selectivity, voltage-dependence and rectification pattern argue against ClC-2 being the VRAC channel (see below). Alternative potential physiological functions of CIC-2 are reviewed by Strange (2002). Disruption of the CIC-2 gene in mice is associated with the degeneration of male germ cells and photoreceptors (Bösl et al., 2001). Functional expression of human CIC-Kb requires the presence of barttin (Estévez et al., 2001). The rodent homologue (CIC-K1) of CIC-Ka demonstrates limited expression as a homomer, but its function is enhanced by barttin (Estévez et al., 2001). Knock out of the ClC-K1 channel induces nephrogenic diabetes insipidus (Matsumura et al., 1999). Classic (type III) Bartter's syndrome and Gitelman's variant of Bartter's syndrome are associated with mutations of the CIC-Kb chloride channel (Simon et al., 1996; 1997). The biophysical and pharmacological properties of CIC-3, and the relationship of the protein to the endogenous volume-regulated anion channel(s) VRAC (see below) is controversial. Activation of heterologously expressed CIC-3 by cell swelling in response to hypotonic solutions has been disputed as have other aspects of regulation, including inhibition by PKC. Lack of chloride ion channel function of ClC-3 heterologously expressed in HEK 293 cells, and inserted in to the plasma membrane, has additionally been claimed. However, phosphorylation by exogenously introduced CaM kinase II may be required for high activity of ClC-3 in this paradigm. In ClC-3 knockout mice, volume-regulated anion currents persist (Srobrawa et al., 2001; Arreola et al., 2002), indicating that CIC-3 is not indispensable for such regulation. However, CIC-3 antisense is reported to reduce VRAC function in HeLa cells and Xenopus laevis oocytes (Hermoso et al., 2002). A novel splice variant of ClC-3 (i.e. ClC-3B), upregulated by NHERF, is expressed in the plasma membrane of epithelial cells and mediates outwardly rectifying currents activated by depolarisation. In association with CFTR, ClC-3B is activated by PKA. CIC-3B is a candidate for the outwardly rectifying chloride channel ORCC (Ogura et al., 2002). Results obtained from CIC-3 knockout mice suggest an endosomal/synaptic vesicle location for the channel and a role, via the dissipation of electrical potential, in the acidification of vesicles. Mice lacking CIC-3 display total degeneration of the hippocampus and retinal degeneration (Srobrawa et al., 2001). Loss of function mutations of CIC-5 are associated with proteinuria, hypercalciuria and kidney stone formation (Dent's disease). A CIC 5 knockout provides a mouse model of this disease (Piwon et al., 2000). Disruption of the CIC-7 gene leads to osteopetrosis in mice due to the ablation of CIC-7 from endosomes that are important for the function of osteoclasts (Kornak et al., 2001).

CFTR. CFTR, a 12TM, ABC type protein, is a cAMP-regulated epithelial cell membrane Cl⁻ channel involved in normal fluid transport across various epithelia. The most common mutation in CFTR (i.e. the deletion mutant, Δ508) results in impaired trafficking of CFTR and reduces its incorporation into the plasma membrane causing cystic fibrosis. In addition to acting as an anion channel per se, CFTR may act as a regulator of several other conductances that include the epithelial Na channel (ENaC), the renal outer medullary potassium channel (ROMK), the outwardly rectifying chloride channel (ORCC), calcium-activated chloride channels (CaCC) and the volume-regulated anion channel (VRAC) (reviewed by Schwiebert et al., 1999, Nilius & Droogmans, 2003).

CETR Nomenclature

Ensemble ID ENSG00000001626

Flavones (UCCF-339, UCCF-029, apigenin, genistein), benzimidazolones (UCCF-853, NS004), psoralens (8-methoxypsoralen) Activators

Blockers CFTR_{inh}-172, glibenclamide

 $\gamma = 6 - 10 \text{ pS}; \text{ permeability sequence} = \text{Br} \geqslant \text{Cl} > \text{I} > \text{F}, \ (P_{\text{Na}}/P_{\text{Cl}} = 0.1 - 0.03); \text{ slight outward rectification; phosphorylation}$ Functional characteristics

necessary for activation by ATP binding at binding nucleotide-binding domains (NBD)1 and 2; positively regulated by PKC and PKGII (tissue specific); regulated by several interacting proteins like syntaxin, Munc18 and PDZ domain

proteins such as NHERF and CAP70

CFTR contains two cytoplasmic nucleotide-binding domains (NBDs) that bind and hydrolyse ATP. A single open-closing cycle involves, in sequence: binding and hydrolysis of ATP at the N-terminal NBD1 (channel opening); ATP binding to the C-terminal NBD2 (stabilisation of the open state) and subsequent ATP hydrolysis at NBD2 (channel closing). Phosphorylation, principally by PKA at sites that reside at least partially within a cytoplasmic regulatory (R) domain, regulates cycles of ATP hydrolysis and ADP/ATP exchange. PKC (and PKGII within intestinal epithelial cells via guanylin-stimulated cGMP formation) positively regulate CFTR activity (see Gadsby & Nairn, 1999). A recent model proposes that the regulation of channel activity by PKA is dependent upon interdomain interactions wherein acidic residues with the N-terminal cytoplasmic region associate with the R domain to stabilise channel activity.

Calcium-activated chloride channel. Chloride channels activated by intracellular calcium (CaCC) are widely expressed in excitable and nonexcitable cells. The molecular nature of CaCC is unclear. Numerous putative CaCC proteins (the CLCA family) have been cloned from human, murine, bovine and porcine species (reviewed by Frings et al., 2000; Fuller & Benos, 2000; Pauli et al., 2000), but their relationship to endogenous CaCC remains to be established (reviewed by Jentsch et al., 2002). Some CLCAs appear to function as cell adhesion proteins, or are secreted proteins. Calcium-activated Cl⁻ currents (I_{Cl(Ca)}) can be recorded from Ehrlich ascites tumour cells in the absence of detectable expression of mCLCA1, 2 or 3 (Papassotiriou et al., 2001). In addition, the kinetics, pharmacological regulation and the calcium sensitivity of CLCA family members and native CaCC differ significantly (e.g. Britton et al., 2002). However, a recent report raises the possibility that the properties of CLCA isoforms may be modified by auxillary subunits (Greenwood et al., 2002). A member of a novel family of chloride channels (the bestrophins) has recently been shown to be an anion selective channel, activated by physiological concentrations of intracellular Ca²⁺, in an heterologous expression system (Qu et al., 2003).

Nomenclature

Ca2+-activated Cl- channel Other names

Activators Intracellular Ca2

Blockers Niflumic acid, DPDPC, DIDS, SITS, NPPB, 9-AC, NPA, Ins(3,4,5,6)P₄, mibefradil, fluoxetine

Functional characteristics $\gamma = 0.5 - 5 \,\mathrm{pS}$; permeability sequence, SCN>I>Br>Cl>gluconate; outward rectification (decreased by increasing [Ca²⁺]_i);

sensitivity to activation by $[Ca^{2+}]$, decreased at hyperpolarized potentials; slow activation at positive potentials (accelerated by increasing $[Ca^{2+}]$); rapid deactivation at negative potentials, deactivation kinetics modulated by anions binding

to an external site; modulated by redox status

Blockade of I_{Cl(Ca)} by niflumic acid, 9-AC, NPA and Ins(3,4,5,6)P₄ is voltage dependent, whereas block by DIDS, mibefradil and NPPB is voltage independent. Extracellular niflumic acid and DCDPC (but not DIDS) exert a complex effect upon I_{Cl(Ca)} in vascular smooth muscle, enhancing and inhibiting inwardly and outwardly directed currents in a manner dependent upon [Ca²⁺]_I (Piper et al., 2002). CaMKII modulates CaCC in a tissue-dependent manner. CaMKII inhibitors block activation of $I_{Cl(Ca)}$ in T_{84} cells, but have no effect in parotid acinar cells (reviewed by Jentsch et al., 2002). In tracheal and arterial smooth muscle cells, but not portal vein myocytes, inhibition of CaMKII reduces inactivation of I_{Cl(Ca)}. Intracellular Ins(3,4,5,6)P₄ may act as an endogenous negative regulator of CaCC channels activated by Ca2+, or CaMKII.

Maxi chloride channel. Maxi Cl⁻ channels are high-conductance, anion-selective, channels initially characterised in skeletal muscle and subsequently found in many cell types including neurones, glia, cardiac muscle, lymphocytes, secreting and absorbing epithelia and human placenta syncytiotrophoblasts. The physiological significance of the maxi Cl⁻ channel is uncertain, but roles in cell volume regulation and apoptosis have been claimed. Recent evidence suggests a role for maxi Cl⁻ channels as a conductive pathway in the swelling-induced release of ATP from mouse mammary C127i cells that may be important for autocrine and paracrine signalling by purines (Sabirov et al., 2001; Dutta et al., 2002).

Maxi Cl Nomenclature

Activators

Other names

High conductance anion channel, volume- and voltage-dependent ATP-conductive large conductance (VDACL) anion channel G-protein-coupled receptors, cytosolic GTP7S, extracellular triphenylethylene antioestrogens (tamoxifen, toremifine),

extracellular chlorpromazine and triflupromazine, cell swelling

Blockers SITS, DIDS, NPPB, DPC, intracellular arachidonic acid, extracellular Zn²⁺ and Gd³⁺

 $\gamma = 280 - 430 \, pS \, (main \, \, state); \, permeability \, sequence, \, I > Br > Cl > F > gluconate \, (\textit{P}_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is \, a \, \, voltage-dependent \, (P_{Cl}/\textit{P}_{Na} = 9 - 26); \, ATP \, is$ Functional characteristics

permeant blocker of single channel activity ($P_{\rm ATP}/P_{\rm Cl} = 0.08 - 0.1$); channel activity increased by patch-excision; channel opening probability (at steady state) maximal within approximately $\pm 20\,\mathrm{mV}$ of $0\,\mathrm{mV}$, opening probability decreased at more negative

and (commonly) positive potentials yielding a bell-shaped curve

Differing ionic conditions may contribute to variable estimates of γ reported in the literature ($K_{\rm m} = 120 \, {\rm mM}$ in symmetrical Cl⁻). Inhibition by arachinonic acid (and cis-unsaturated fatty acids) is voltage independent, occurs at an intracellular site, and involves both channel shut down $(K_d = 4 - 5 \,\mu\text{M})$ and a reduction of γ $(K_d = 13 - 4 \,\mu\text{M})$ 14 µM). Blockade of channel activity by SITS, DIDS, Gd3+ and arachidonic acid is paralleled by decreased swelling-induced release of ATP (Sabirov et al., 2001; Dutta et al., 2002). Channel activation by antioestrogens in whole cell recordings requires the presence of intracellular nucleotides and is prevented by pretreatment with 17β-oestradiol, dibutryl cAMP or intracellular dialysis with GDPβS (Diaz et al., 2001). Activation by tamoxifen is suppressed by low concentrations of okadaic acid, suggesting that a dephosphorylation event by protein phosphatase PP2A occurs in the activation pathway (Diaz et al., 2001). In contrast, 17β-estradiol and tamoxifen appear to directly inhibit the maxi Cl- channel of human placenta reconstituted into giant liposomes and recorded in excised patches (Henriquez & Riquelme, 2002).

Alexander et al Chloride channels S77

Volume-regulated chloride channels. Volume-activated chloride channels (also termed VSOAC, volume-sensitive organic osmolyte/anion channel; VRC, volume-regulated channel and VSOR, volume expansion-sensing outwardly rectifying anion channel) participate in regulatory volume decrease (RVD) in response to cell swelling. VRAC may also be important for several other processes including the regulation of membrane excitability, transcellular Cl⁻ transport, angiogenesis, cell proliferation and apoptosis (reviewed by Nilius & Droogmans, 2003). VRAC may not be a single entity, but may instead represent a number of different channels that are expressed to a variable extent in different tissues and are differentially activated by cell swelling. Although ClC-3, and most recently ClC-3B, has been suggested to form, or contribute to, VRAC in heart and smooth muscle, the molecular identity of VRAC remains uncertain. Inconsistencies between studies that include lack of effect of hypotonic solutions upon currents attributed to heterologously expressed ClC-3, lack of expression, or function, of ClC-3 at the plasma membrane and the persistence of swelling-activated anion currents (I_{Cl.swell}) with the characteristics of VRAC in ClC-3 knockout mice cast doubt upon the purported relationship between ClC-3 and VRAC. Evidence for a link between ClC-3 and VRAC is provided by the suppression, in native cells, of volume-activated Cl currents by an anti-ClC-3 antibody. However, the specificity of the antibody employed has been questioned. Several former VRAC candidates including *MDR1* P-glycoprotein, Icln, Band 3 anion exchanger and phospholemman are no longer considered likely to fulfill this function (see reviews by Nilius *et al.*, 1997; 1999; Okada, 1997; Strange, 1998; Jentsch *et al.*, 2002; Nilius & Droogmans, 2003).

VRAC (volume-regulated anion channel), VSOAC (volume-sensitive organic osmolyte/anion channel), VRC (volume-regulated Nomenclature channel), VSOR (volume expansion-sensing outwardly rectifying anion channel) Activators Cell swelling; low intracellular ionic strength; GTPyS DCPIB (most selective agent available), clomiphene, nafoxidine, mefloquine, tamoxifen, gossypol, arachidonic acid, mibefradil, Blockers NPPB, quinine, quinidine, chromones NDGA, 9-AC, DIDS, 1,9-dideoxyforskolin, oxalon dye (diBA-(5)-C4), extracellular nucleotides, nucleoside analogues, intracellular Mg^{2+} Functional characteristics $\gamma = 10 - 20 \text{ pS}$ (negative potentials), 50 - 90 pS (positive potentials); permeability sequence SCN > I > NO³⁻ > Br⁻ > Cl⁻ > F⁻ > gluconate; outward rectification due to voltage dependence of γ ; inactivates at positive potentials in many, but not all, cell types; time-dependent inactivation at positive potentials; intracellular ionic strength modulates sensitivity to cell swelling and rate of channel activation; rate of swelling-induced activation is modulated by intracellular ATP concentration; ATP dependence is independent of hydrolysis and modulated by rate of cell swelling; inhibited by increased intracellular free Mg²⁺ concentration; tyrosine phosphorylation step(s) may modulate channel activation; swelling-induced activation of VRAC requires a functional Rho-Rho kinase MLCK phosphorylation pathway, but not activation of the pathway (i.e. a permissive effect)

In addition to conducting monovalent anions, in many cell types, the activation of VRAC by a hypotonic stimulus can allow the efflux of organic osmolytes such as amino acids and polyols that may contribute to RVD.

Other chloride channels: In addition to intracellular chloride channels that are not considered here, plasma membrane channels other than those listed have been functionally described. Many cells and tissues contain outwardly rectifying chloride channels (ORCC) that may correspond to VRAC active under isotonic conditions and, as noted above, possibly CIC-3B (Ogura *et al.*, 2002). A cAMP-activated Cl⁻ channel that does not correspond to CFTR has been described in intestinal Paneth cells (Tsumura *et al.*, 1998). Bestrophins comprise a new group of molecularly identified Cl⁻ channels that, at least in one case, can be activated by intracellular calcium at physiological concentrations (Qu *et al.*, 2003).

Abbreviations: 9-AC, anthracene-9-carboxylic acid; CFTR_{int}-172, 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone; S-(-)CPP, S-(-)2-(4-chlorophenoxy)propionic acid; S-(-)CPB, S-(-)2-(4-chlorophenoxy)butyric acid; DCPIB, 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid; diBA-(5)-C4, bis-(1,3-dibutylbarbituric acid)pentamethine oxanol; DIDS, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid; DNDS, 4,4'-dinitrostilbene-2,2'-disulphonic acid; NDGA, nordihydroguiaretic acid; DPC, diphenylamine carboxylic acid; DPDPC, dichloro-diphenylamine 2-carboxylic acid; NPA, N-phenylanthracilic acid; NPPB, 5-nitro-2-(3-phenylpropylamino)benzoic acid; NS004, 5-trifluoromethyl-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidazole-2-one; SITS, 4'-isothiocyanostilbene-2,2'-disulphonic acid; UCCF-029, 2-(4-pyridinium)benzo[h]4H-chromen-4-one bisulphate; UCCF-180, 3-(3-butynyl)-5-methoxy-1-phenylpyrazole-4-carbaldehyde; UCCF-853, 1-(3-chlorophenyl)-5-trifluoromethyl-3-hydroxybenzimidazol-2-one

Further Reading:

AKABAS, M.H. (2000). Cystic fibrosis transmembrane conductance regulator; structure and function of an epithelial chloride channel. *J. Biol. Chem.*, 275, 3729–3732.

BEGENISICH, T. & MELVIN, J.T. (1998). Regulation of chloride channels in secretory epithelia. J. Membr. Biol., 163, 77-85

EGGERMONT, J., TROUET, D., CARTON, I. & NILIUS, B. (2001). Cellular function and control of volume regulated anion channels. *Cell Biochem. Biophys.*, 35, 263–274.

ESTÉVEZ, R. & JENTSCH, T.J. (2002). CLC chloride channels: correlating structure with function. Curr. Opin. Struct. Biol., 12, 531-539.

FAHLKE, C. (2001). Ion permeation and selectivity in CIC-type chloride channels. Am. J. Physiol., 280, F748-757.

FRINGS, S., REUTER, D. & KLEENE, S.J. (2000). Neuronal Ca²⁺-activated Cl⁻ channels – homing in on an elusive channel species. *Prog. Neurobiol.*, **60**, 247–289.

FULLER, C.M. & BENOS, D.J. (2000). Ca²⁺-activated Cl⁻ channels: a newly emerging anion transport family. *News Physiol. Sci.*, **15**, 165–171.

GADSBY, D. & NAIRN, A.C. (1999). Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev., 79 (Suppl. 1), S77-S107.

GREENWOOD, I.A. & LARGE, W.A. (1999). Properties and role of chloride channels in smooth muscle In: *Chloride Channels*. ed. Kozlowski, R. pp. 121–136. Oxford: ISIS Medical Media.

HWANG, T.-C. & SHEPPARD, D.N. (1999). Molecular pharmacology of the CFTR Cl⁻ channel. Trends Pharmacol. Sci., 20, 448-453.

JENTSCH. T.J., STEIN, V., WEINREICH, F. & ZDEBIK, A.A. (2002). Molecular structure and physiological function of chloride channels. *Physiol. Rev.*, 82, 503-568.

KIDD, J.F. & THORN, P. (2000). Intracellular Ca2+ and Cl- channel activation in secretory cells. Annu. Rev. Physiol., 62, 493-513.

KIRK, K. (1997). Swelling-activated organic osmolyte channels J. Membr. Biol., 158, 1–16.

KIRK, K.L. (2000). New paradigms of CFTR chloride channel regulation Cell Mol. Life Sci., 57, 623-634.

LARGE, W.A. & WANG, Q. (1996). Characteristics and physiological role of the Ca²⁺-activated Cl⁻ conductance in smooth muscle. *Am. J. Physiol.*, 271, C435-C454.

NAREN, A.P. & KIRK, K.L. (2000). CFTR chloride channels: binding partners and regulatory networks. News Physiol. Sci., 15, 57-61.

NILIUS, B. & DROOGMANS, G. (2003). Amazing chloride channels: an overview. Acta. Physiol. Scand., 177, 119-147.

NILIUS, B., EGGERMONT, J. & DROOGMANS, G. (2000). The endothelial volume-regulated anion channel, VRAC. Cell Physiol. Biochem., 10, 313-320.

NILIUS, B., EGGERMONT, J., VOETS, T., BUYSE, G., MANOLOPOULOS, V. & DROOGMANS, G. (1997). Properties of volume regulated anion channels in mammalinan cells. *Prog. Biophys. Mol. Biol.*, **68**, 69–119.

NILIUS, B., VOETS, T., EGGERMONT, J. & DROOGMANS, G. (1999) VRAC: a multifunctional volume-regulated anion channel in vascular epithelium. In: *Chloride Channels*. ed. Kozlowski, R. pp. 47–63. Oxford: ISIS Medical Media.

OKADA, Y. (1997). Volume expansion-sensing outward rectifier Cl- channel; fresh start to the molecular identity and voltage sensor. Am. J. Physiol., 273, C755-C789.

PAULI, B.U., ABDEL-GHANY, M., CHENG, H.C., GRUBER, A.D., ARCHIBALD, H.A. & ELBLE RC. (2000). Molecular characteristics and functional diversity of Clca family members. Clin. Exp. Pharmacol. Physiol., 27, 901–905.

PUSCH, M., ACCARDI, A., LIANTONIO, A., GUIDA, P., TRAVERSO, S., CAMERINO, D.C. & CONTI, F. (2002). Mechanisms of block of muscle type CLC chloride channels. *Mol. Membr. Biol.*, 19, 285–292.

SCHULTZ, R.D., SINGH, A.K., DEVOR, D.C. & BRIDGES, R.J. (1999). Pharmacology of CFTR chloride channel activity. *Physiol. Rev.*, **79** (Suppl. 1), S109-S144.

SCHWIEBERT, E.M., BENOS, D.J., EGAN, M.E., STUTTS, M.J. & GUGGINO, W.B. (1999). CFTR is a conductance regulator as well as a chloride channel. *Physiol. Rev.*, **79** (Suppl. 1), S145–S166.

STRANGE, K. (1998). Molecular identity of the outwardly rectifying, swelling-activated anion channel: time to re-evaluate pICln. *J. Gen. Physiol.*, **111**, 617–622. STRANGE, K. (1999). Regulation of a swelling-activated anion channel by intracellular ionic strength and ATP concentration. In: *Chloride Channels*. ed. Kozlowski, R. pp. 65–78. Oxford: ISIS Medical Media.

STRANGE, K. (2002). Of mice and worms: novel insights into ClC-2 anion channel physiology. News Physiol. Sci., 17, 11-16.

VALVERDE, M.A. (1999). CIC channels: leaving the dark ages on the verge of a new millennium. Curr. Opin. Cell Biol., 11, 509-516.

WALDEGGER, S. & JENTSCH T.J. (2000). From tonus to tonicity: physiology of ClC chloride channels. J. Am. Soc. Nephrol., 11, 1331-1339.

References

ARREOLA, J. et al. (2002). J. Physiol., 545.1, 207-216.

BRITTON, F.C. et al. (2002). J. Physiol., 539.1, 107-117.

BÖSL, M.R. et al. (2001). EMBO J., 20, 1289-1299.

DIAZ, M. et al. (2001). J. Physiol., 536.1,79-88.

DUTTA, A.K. et al. (2002). J. Physiol., 542.3, 803-816.

DUTZLER, R. et al. (2002). Nature, 415, 287-294.

ESTÉVEZ, R. et al. (2001). Nature, 414, 558-561.

GREENWOOD, I.A. et al. (2002). J. Biol. Chem., 277, 22119-22122.

HENRIQUEZ, M. & RIQUELME, G. (2002). J. Membr. Biol., 191, 59-68.

HERMOSO, M. et al. (2002). J. Biol. Chem., 277, 40066-40074.

KORNAC, U. et al. (2001). Cell, 104, 205-215.

LIANTONIO, A. et al. (2002). Mol. Pharmacol., 62, 265-271.

MATSUMURA, Y. et al. (1999). Nat. Genet., 21, 95-98.

OGURA, T. et al. (2002). FASEB J., 16, 863-865.

PAPASSOTIRIOU, J. et al. (2001). Pflügers Arch., 442, 273-279.

PIPER, A.S. et al. (2002). J. Physiol., 539.1, 119-131.

PIWON, N. et al. (2000). Nature, 408, 369-373.

QU, Z. et al. (2003). J. Biol. Chem., 278, 49563-49572.

SABIROV, R.Z. et al. (2001). J. Gen. Physiol., 118, 251-266.

SIMON, D.B. et al. (1996). Nat. Genet., 12, 24-30

SIMON, D.B. et al. (1997). Nat. Genet., 17, 171-178.

STALEY, K. et al. (1996). Neuron, 17, 543 – 551.

STOBRAWA, S.M. et al. (2001). Neuron, 29, 185-196.

TSUMURA, T. et al. (1998). J. Physiol., 512, 765-777.

Cyclic nucleotide-gated (CNG) channels

Overview: CNG channels are responsible for signalling in the primary sensory cells of the vertebrate visual and olfactory systems. A standardised nomenclature for CNG channels has been proposed by the NC-IUPHAR subcommittee on voltage-gated ion channels (see Hofmann et al., 2002; 2003).

CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors (Fesenko et al., 1985; Kaupp et al., 1989), where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cGMP levels. This results in a closure of CNG channels and a reduced 'dark current'. Similar channels were found in the cilia of olfactory neurons (Nakamura & Gold, 1987) and the pineal gland (Dryer & Henderson, 1991). The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include HCN, eag and certain plant potassium channels.

Nomenclature CNGA1 CNGA2 CNGA3 CNG1, CNGa1, RCNC1 CNG2, CNGa3, OCNC1 CNG3, CNGa2, CCNC1 Other names Ensembl ID ENSG00000170455 ENSG00000183862 ENSG00000144191 Activators Intracellular cyclic nucleotides: Intracellular cyclic nucleotides: Intracellular cyclic nucleotides: cGMP (EC₅₀ $\approx 30 \,\mu\text{M}$) > cAMP $cGMP \approx cAMP (EC_{50} \approx 1 \mu M)$ $cGMP (EC_{50} \approx 30 \,\mu M) >> cAMP$ Inhibitors L-cis diltiazem L-cis diltiazem $\gamma = 35 \text{ pS}$ Functional characteristics y = 25 - 30 pS $\gamma = 40 \text{ pS}$ $P_{\rm Ca}/P_{\rm Na}$ 3.1 $P_{\rm Ca}/P_{\rm Na}$ 6.8 $P_{\rm Ca}/P_{\rm Na}$ 10.9

CNGA1, CNGA2 and CNGA3 express functional channels as homomers. Three additional subunits CNGA4 (Genbank protein AAH40277), CNGB1 (Q14028) and CNGB3 (NP 061971) do not, and are referred to as auxiliary subunits. The subunit composition of the native channels is believed to be as follows. Rod: CNGA1₃/ CNGB1a; cone: CNGA33/CNGB3; olfactory neurons: CNGA22/CNGA4/CNGB1b (Weitz et al., 2002; Zheng et al., 2002; Zhong et al., 2002).

Further Reading:

HOFMANN, F., BIEL, M. & KAUPP, U.B. (2002). Cyclic nucleotide-modulated channels. In: The IUPHAR Compendium of Voltage-Gated ion Channels. eds. Catterall, W.A., Chandy, K.G. & Gutman, G.A. pp. 191-206. Leeds, IUPHAR Media.

HOFMANN, F., BIEL, M. & KAUPP, U.B. (2003) International union of pharmacology. XLII. Compendium of voltage-gated ion channels: cyclic nucleotidemodulated channels. Pharmacol. Rev., 55, 587-589.

KAUPP, U.B. &, SEIFERT, R. (2002). Cyclic nucleotide-gated ion channels. Physiol. Rev., 82, 769-824.

References:

DRYER, S.E. & HENDERSON, D. (1991). Nature, 353, 756-758.

FESENKO, E.E. et al. (1985). Nature, 313, 310-313.

KAUPP, U.B., et al. (1989). Nature, 342, 762-766.

NAKAMURA, T. & GOLD, G.H. (1987). Nature, 325, 442-444.

WEITZ, D. et al. (2002). Neuron, 36, 881-889.

ZHENG, J. et al. (2002). Neuron, 36, 891-896.

ZHONG, H. et al. (2002). Nature, 420, 193-198.

Epithelial sodium channels (ENaC)

Overview: ENaC are responsible for sodium reabsorption by the epithelia lining the distal part of the kidney tubule, and fulfil similar functional roles in some other tissues such as the alveolar epithelium and the distal colon. This reabsorption of sodium is regulated by aldosterone and vasopressin, and is one of the essential mechanisms in the regulation of sodium balance, blood volume and blood pressure. The sodium reabsorption is suppressed by the 'potassium-sparing' diuretics amiloride and triamterene. The first ENaC subunit (α) was isolated by expression cloning from a rat colon cDNA library, as a current sensitive to inhibition by amiloride (Canessa *et al.*, 1993). Two further subunits (β and γ) were identified by functional complementation of the α subunit (Canessa *et al.*, 1994). A related δ subunit was later identified (Waldmann *et al.*, 1995) that has a wider tissue distribution. ENaC subunits contain two putative TM domains. The stoichiometry of the epithelial sodium channel in the kidney and related epithelia is thought to be predominantly a heterotetramer of $2\alpha:1\beta:1\gamma$ subunits (Firsov *et al.*, 1998).

Nomenclature Epithelial sodium channel (ENaC)

Ensemble ID Human α subunit, ENSG00000111319; human β subunit, ENSG00000168447; human γ subunit, ENSG00000166828;

human δ subunit, ENSG00000162572

Blockers Amiloride (100 nm), benzamil (10 nm) (Canessa et al., 1994)

Functional characteristics $\gamma \approx 5 \,\mathrm{pS}, \,P_{\mathrm{Na}}/P_{\mathrm{K}} > 10$; tonically open at rest; expression and ion flux regulated by circulating aldosterone and

aldosterone-mediated changes in gene transcription, action of aldosterone competitively antagonised by spironolactone

and its more active metabolite, canrenone

Data in the table refer to the $2\alpha\beta\gamma$ heteromer. There are several human diseases resulting from mutations in ENaC subunits or their regulation, most of which lead to overexpression or underexpression of the channel in epithelia. The best known of these is Liddle's syndrome, usually associated with gain of function mutations in the β and γ subunits that result in decreased downregulation of ENaC (Rotin *et al.*, 1994; Staub *et al.*, 1996). Pseudohypoaldosteronism type 1 (PHA-1) can occur through either mutations in the gene encoding the mineralocorticoid receptor or, mutations in genes encoding ENaC subunits (see Bonny & Hummler, 2000).

Further Reading:

ALVAREZ DE LA ROSA, D., CANESSA, C.M., FYFE, G.K. & ZHANG, P. (2000). Structure and regulation of amiloride-sensitive sodium channels. *Annu. Rev. Physiol.*, **62**, 573–594.

BONNY, O. & HUMMLER, E. (2000). Dysfunction of epithelial sodium transport: from human to mouse. Kidney Int., 57, 1313-1318.

GORMLEY, K., DONG, Y. & SAGNELLA, G.A. (2003). Regulation of the epithelial sodium channel by accessory proteins. Biochem. J., 371, 1-14.

KELLENBERGER, S. & SCHILD, L. (2002). Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. *Physiol. Rev.*, **82**, 735–767.

ROSSIER, B.C., PRADERVAND, S., SCHILD, L. & HUMMLER, E. (2002). Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. *Annu. Rev. Physiol.*, **64**, 877–897.

References:

CANESSA, C.M. et al. (1993). Nature, 361, 467-470.

CANESSA, C.M. et al. (1994). Nature, 367, 463-466.

FIRSOV, D. et al. (1998). EMBO J., 17, 344-352.

ROTIN, D. et al. (1994). EMBO J., 13, 4440-4450.

STAUB, O. et al. (1996). EMBO J., 15, 2371-2380.

WALDMANN, R. et al. (1995). J. Biol. Chem., 270, 27411-27414.

HCN (hyperpolarisation-activated, cyclic nucleotide-gated) channels

Overview: The HCN channels are cation channels that are activated by hyperpolarisation to voltages negative to $\sim -50 \,\mathrm{mV}$ (Gauss *et al.*, 1998, Ludwig *et al.*, 1998, Santoro *et al.*, 1998). The cyclic nucleotides cAMP and cGMP do not directly activate the channels but shift the activation curves of HCN channels to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons (Di Francesco, 1993; Pape, 1996). In native cells, these currents have a variety of names such as I_h , I_q and I_f . The four known HCN channels have six TM domains and form tetramers. It is not known whether they can form heteromers with each other. A standardised nomenclature for HCN channels has been proposed by the NC-IUPHAR subcommittee on voltage-gated ion channels (see Hofmann *et al.*, 2002; 2003).

Nomenclature	HCN1	HCN2	HCN3	HCN4
Ensembl ID	ENSG00000164588	ENSG00000099822	ENSG00000143630	ENSG00000138622
Activators	cAMP>cGMP (both weak)	cAMP > cGMP	_	cAMP>cGMP
Inhibitors	Cs ⁺ , ZD7288			

HCN channels are permeable to both Na and K ions with a Na/K permeability ratio of about 0.2. Functionally, they differ from each other in terms of time constant of activation with HCN1 fastest, HCN4 slowest and HCN2 & HCN3 intermediate. The compound ZD7288 (BoSmith *et al.* 1993) has proved useful in identifying functional HCN channels in native cells.

Abbreviation: ZD7288, 4-(N-ethyl-N-phenyl-amino)-1,2-dimethyl-6-(methylamino)pyrimidinium chloride.

Further Reading:

BIEL, M., LUDWIG, A., ZONG, X. & HOFMANN, F. (1999). Hyperpolarisation-activated cation channels: a multi-gene family. *Rev. Physiol. Biochem. Pharmacol.*, 136, 165–181.

BIEL, M., SCHNEIDER, A. & WAHL, C. (2002). Cardiac HCN channels: structure, function and modulation. Trends Cardiovasc. Med., 12 206-213.

DIFRANCESCO, D. (1993). Pacemaker mechanisms in cardiac tissue. Ann. Rev. Physiol., 55, 455-472

HOFMANN, F., BIEL, M. & KAUPP, U.B. (2002). Cyclic nucleotide-modulated channels. In: *The IUPHAR Compendium of Voltage-Gated Ion Channels*. eds. Catterall, W.A., Chandy, K.G. & Gutman, G.A. pp. 191–206. Leeds, IUPHAR Media.

HOFMANN, F., BIEL, M. & KAUPP, U.B. (2003) International union of pharmacology. XLII. Compendium of voltage-gated ion channels: cyclic nucleotide-modulated channels. *Pharmacol. Rev.*, **55**, 587–589.

KAUPP, U.B. & SEIFERT, R. (2001). Molecular diversity of pacemaker ion channels. Ann. Rev. Physiol., 63, 235-257.

PAPE, H.C. (1996) Queer current and pacemaker: the hyperpolarisation-activated cation current in neurons. Ann. Rev. Physiol., 58, 299-327.

References:

BOSMITH, R.E. et al. (1993). Br. J. Pharmacol., 110, 343-349.

GAUSS, R. et al. (1998). Nature, 393, 583-587.

LUDWIG, A. et al. (1998). Nature, 393, 587-591.

SANTORO, B. et al. (1998). Cell, 93, 717–729.

IP₃ receptor channels

Overview: The inositol 1,4,5-trisphosphate receptors (IP₃R) are ligand-gated Ca^{2+} -release channels on intracellular Ca^{2+} store sites (such as the endoplasmic reticulum). They are responsible for the mobilization of intracellular Ca^{2+} stores and play an important role in intracellular Ca^{2+} signalling in a wide variety of cell types. Three different gene products (types I–III) have been isolated, which assemble as large tetrameric structures. IP₃Rs are closely associated with certain proteins: calmodulin, FKBP (and calcineurin via FKBP). They are phosphorylated by PKA, PKC, PKG and CaMKII.

Nomenclature	IP ₃ R1	IP ₃ R2	IP ₃ R3
Other names	INSP3R1	INSP3R2	INSP3R3
Ensembl ID	ENSG00000150995	ENSG00000123104	ENSG00000096433
Endogenous activators	$Ins(1,4,5)P_3$ (nM- μ M),	Ins(1,4,5)P ₃ (nM – μ M),	$Ins(1,4,5)P_3 (nM - \mu M),$
	cytosolic Ca^{2+} (<750 μ M), cytosolic ATP (<mm)< td=""><td>cytosolic Ca²⁺ (nM)</td><td>cytosolic Ca²⁺ (nM)</td></mm)<>	cytosolic Ca ²⁺ (nM)	cytosolic Ca ²⁺ (nM)
Pharmacological	InsP ₃ analogues including	InsP ₃ analogues including	_
activators	Ins(2,4,5)P ₃ , adenophostin A (nM)	Ins(2,4,5)P ₃ , adenophostin A (nM)	
Antagonists	Xestospongin C (μ M), phosphatidylinositol 4,5-bisphosphate (μ M), caffeine (mM), heparin (μ g/ml), decavanadate (μ M), calmodulin at high cytosolic Ca ²⁺	Heparin (μg/ml), decavanadate (μM)	Heparin (μ g/ml), decavanadate (μ M)
Functional characteristics	$P_{\rm Ba}/P_{\rm K} \sim 6$, single channel conductance $\sim 70{\rm pS}~(50{\rm mM}~{\rm Ca}^{2+})$	single channel conductance $\sim 70 \text{ pS} (50 \text{ mM Ca}^{2+}),$ $\sim 390 \text{ pS} (220 \text{ mM Cs}^{+})$	single channel conductance ∼ 88 pS (55 mM Ba ²⁺)

The absence of a modulator of a particular isoform of receptor indicates that the action of that modulator has not been determined, not that it is without effect. A region of IP_3R1 likely to be involved in ion translocation and selection has been identified (Ramos-Franco *et al.*, 1999) and information on subunit oligomerization and topology are also available (Galvan *et al.*, 1999).

Abbreviation: FKBP, FK506 binding protein

Further Reading:

BERRIDGE, M.J., LIPP, P. & BOOTMAN, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol., 1, 11-21.

BEZPROZVANNY, I. & EHRLICH, B.E. (1995). The inositol 1,4,5-trisphosphate (Insp (3)) receptor. J. Memb. Biol., 145, 205-216.

BULTYNCK, G., SIENAERT, I., PARYS, J.B., CALLEWAERT, G., DE SMEDT, H., BOENS, N., DEHAEN, W. & MISSIAEN, L. (2003). Pharmacology of inositol trisphosphate receptors. *Pflugers Archiv.*, **445**, 629–642.

EHRLICH, B.E. (1995). Function properties of intracellular calcium release channels. Curr. Opin. Neurobiol., 5, 304-309.

FURUICHI, T. & MIKOSHIBA, K. (1995). Inositol 1,4,5-trisphosphate receptor-mediated Ca²⁺ signaling in the brain. J. Neurochem., 64, 953–960.

JOSEPH, S.K. (1996). The inositol trisphosphate receptor family. Cell. Signal, 8, 1-7.

MIKOSHIBA, K. (1997). The InsP₃ receptor and intracellular Ca²⁺ signalling. Curr. Op. Neurobiol., 7, 339–345.

PATEL, S., JOSEPH, S.K. & THOMAS, A.P. (1999). Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium, 25, 247-264.

TAYLOR C.W. & TRAYNOR, D. (1995). Calcium and inositol trisphosphate receptors. J. Memb. Biol., 145, 109-118.

TAYLOR, C.W. & BROAD, L.M. (1998). Pharmacological analysis of intracellular Ca²⁺ signalling: problems and pitfalls. *Trends Pharmacol. Sci.*, 19, 370–375.

WILCOX, R.A., PRIMROSE, W.U., NAHOSRSKI, S.R. & CHALLISS, R.A.J. (1998). New developments in the molecular pharmacology of the *myo*-inositol 1,4,5-trisphosphate receptor. *Trends Pharmacol. Sci.*, **19**, 467–475.

VERKHRATSKY, A. (2002). The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium, 32 393-404.

References:

GALVAN, D.L. et al. (1999). J. Biol. Chem., 274, 29483-29492.

RAMOS-FRANCO, J. et al. (1999). J. Gen. Physiol., 114, 243-250.

Alexander et al Potassium channels S83

Potassium channels

Overview: Potassium channels are fundamental regulators of excitability. They control the frequency and the shape of action potential waveform, the secretion of hormones and neurotransmitters and cell membrane potential. Their activity may be regulated by voltage, calcium and neurotransmitters (and the signalling pathways they stimulate). They consist of a primary pore-forming α subunit often associated with auxiliary regulatory subunits. Since there are over 70 different genes encoding K channels α subunits in the human genome, it is beyond the scope of this guide to treat each subunit individually. Instead, channels have been grouped into families and subfamilies based on their structural and functional properties. The relevant Ensembl family references (rather than gene references) are given for each subfamily group. The three main families are the 2TM (2 transmembrane domain), 4TM and 6TM families. A standardised nomenclature for potassium channels has been proposed by the NC-IUPHAR subcommittees on potassium channels (see Gutman & Chandy, 2002; Gutman et al., 2003).

The 2TM family of K channels

The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels ($K_{IR}2.x$), the G-protein-activated inward-rectifier K channels ($K_{IR}3.x$) and the ATP-sensitive K channels ($K_{IR}6.x$ that combine with sulphonylurea receptors (SUR)). The pore-forming α subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. $K_{IR}3.2$) with $K_{IR}3.3$).

Subfamily group	K _{IR} 1.x	K _{IR} 2.x	K _{IR} 3.x	K _{IR} 4.x
Subtypes	$K_{IR}1.1$ (ROMK1)	$K_{IR}2.1-2.4$ (IRK1-4)	$K_{IR}3.1-3.4$ (GIRK1-4)	$K_{IR}4.1-4.2$
Ensembl family	ENSF00000000219	ENSF00000000219	ENSF00000000219	ENSF00000000219
Activators	_	_	PIP_2 , $G\beta\gamma$	_
Inhibitors	_	[Mg ²⁺] _i , polyamines (internal)	_	_
Functional characteristic	Inward-rectifier	IK ₁ in heart, 'strong'	G-protein activated	Inward-rectifier current
	current	inward-rectifier current	inward-rectifier current	
Subfamily group	K _{IR} 5.x	K _{IR} 6.x		K _{IR} 7.x
Subtypes	$K_{IR}5.1$	$K_{IR}6.1-6.2 (K_{ATP})$		$K_{IR}7.1$
Ensembl family	ENSF00000000219	ENSF00000000219		ENSF00000000219
Activators	_	Minoxidil, cromakali	im, diazoxide, nicorandil	_
Inhibitors	_	Tolbutamide, glibeno	clamide	_

Inward-rectifier current

The 4TM family of K channels

Functional characteristic

Associated subunits

The 4TM family of K channels are thought to underlie many leak currents in native cells. They are open at all voltages and regulated by a wide array of neurotransmitters and biochemical mediators. The primary pore-forming α subunit contains two pore domains (indeed, they are often referred to as two-pore domain K channels) and so it is envisaged that they form functional dimers rather than the usual K channel tetramers. There is some evidence that they can form heterodimers within subfamilies (e.g. TASK1 with TASK3). There is no clear, current, consensus on nomenclature of 4TM K channels, nor on the division into subfamilies (see Gutman & Chandy 2002; Gutman et al., 2003). The suggested division into subfamilies, below, is based on similarities in both structural and functional properties within subfamilies.

ATP-sensitive, inward-rectifier current

SUR1, SUR2A, SUR2B

Inward-rectifier current

Subfamily group	TWIK	TREK	TASK	TALK	THIK
Subtypes	TWIK1 (KCNK1),	TREK1 (KCNK2),	TASK1 (KCNK3),	TALK1 (KCNK16),	THIK1 (KCNK13),
	TWIK2 (KCNK6),	TREK2 (KCNK10),	TASK3 (KCNK9),	TASK2 (KCNK5),	THIK2 (KCNK12)
	KNCK7	TRAAK (KCNK4)	TASK5 (KCNK15)	TASK4 (KCNK17)	
Ensembl family	ENSF00000000669	ENSF00000000669	ENSF00000000937	ENSF00000000669	ENSF00000003131
Activators	_	Halothane (not TRAAK), riluzole, stretch, heat, arachidonic acid, acid pH _i	Halothane	Alkaline pH _o	_
Inhibitors	Acid pH _i		Anandamide (TASK1), Ruthenium red (TASK3), Acid pH _O	_	Halothane

The KCNK7, TASK5 and THIK2 subtypes, when expressed in isolation, are nonfunctional. A recently cloned novel member of this family (TRESK, ENSG00000186795, Sano *et al.*, 2003) does not fit into any of the five subfamilies above and is highly localised to the spinal cord in humans. All 4TM channels are insensitive to the classical potassium channel blockers TEA and 4-AP but are blocked to varying degrees by Ba²⁺ ions.

The 6TM family of K channels

The 6TM family of K channels comprises the voltage-gated K_V subfamilies, the KCNQ subfamily the EAG subfamily (which includes herg channels), the Ca^{2+} -activated Slo subfamily (actually with 7TM) and the Ca^{2+} -activated SK subfamily. As for the 2TM family, the pore-forming α subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. $K_V1.1$ with $K_V1.2$; KCNQ2 with KCNQ3)

Subfamily group	$K_{V}1.x$	$K_{V}2.x$	$K_V 3.x$	$K_V4.x$
Subtypes	$K_V 1.1 - K_V 1.8$	$K_{\rm V}2.1-2.2$	$K_{\rm V}3.1-3.4$	$K_{V}4.1-4.3$
	Shaker-related	Shab-related	Shal-related	Shaw-related
Ensembl family	ENSF00000000193	ENSF00000000193	ENSF00000000193	ENSF00000000193
Inhibitors	TEA potent (1.1),	TEA moderate	TEA potent, 4-AP	_
	TEA moderate (1.3, 1.6),		potent (3.1, 3.2), BDS-1 (3.4)	
	4-AP potent (1.4),			
	α -dendrotoxin (1.1, 1.2, 1.6),			
	margatoxin (1.1, 1.2, 1.3),			
	noxiustoxin (1.2, 1.3)			
Functional characteristics	K_V (1.1–1.3, 1.5 -1.8) K_A (1.4)	$K_{V}(2.1)$	K_V (3.1, 3.2) K_A (3.3, 3.4)	K_A
Associated subunits	$K_{V}\beta_{1}, K_{V}\beta_{2}$	$K_{\rm V}5.1, K_{\rm V}6.1-6.3,$	$MiRP2 (K_v 3.4)$	KCHIP, KCHAP
	.,, -	$K_{V}8.1, K_{V}9.1-9.3$		

Subfamily group Subtypes Ensembl family	KCNQ KCNQ1-5 ENSF00000000476	EAG eag1-2, elk1-3, erg1-3 (herg 1-3) ENSF00000000403	Slo (BK), Slack ENSF00000000871	SK SK1-SK3; SK4 (IK) ENSF00000000663
Activators Inhibitors	Retigabine (KCNQ2-5) TEA (KCNQ2, 4), XE991 (KCNQ1,2,4,5), linopirdine	E-4031 (erg1), astemizole (erg1), terfenadine (erg1)	NS004, NS1619 TEA, charybdotoxin, iberiotoxin	Charybdotoxin (SK4), apamin (SK1-3)
Functional characteristic Associated subunits	KCNQ1 – cardiac IK _s , KCNQ2/3 – M current minK, MiRP2 (KCNQ1)	(h)erg1 - cardiac IK _R minK, MiRP1 (erg1)	Maxi K _{Ca} K _{Na} (slack)	SK _{Ca} (SK1-3), IK _{Ca} (SK4)

Abbreviations: 4-AP, 4-aminopyridine; **BDS-1**, blood depressing substance 1; **E4031**, 1-(2-(6-methyl-2-pyridyl)ethyl)-4-(4-methylsulphonyl aminobenzoyl)piperidine; **NS004**, 1-(2-hydroxy-5-chlorophenyl)-5-trifluromethyl-2-benzimidazolone; **NS1619**, 1-(2'-hydroxy-5'-trifluromethylphenyl)-5-trifluro-methyl-2(3*H*)benzimidazolone; **PIP**₂, phosphatidylinositol 4,5-bisphosphate; **TEA**, tetraethylammonium; **XE991**, 10,10-*bis*(4-pyridinylmethyl)-9(10*H*)-anthracene

Further Reading:

ABRAHAM, M.R., JAHANGIR, A., ALEKSEEV, A.E. & TERZIX, A. (1999). Channelopathies of inwardly rectifying potassium channels. FASEB J., 13, 1901–1999.

AGUILAR-BRYAN, L., CLEMENT, J.P., GONZALEZ, G., KUNJILWAR, K., BABENKO, A. & BRYAN, J. (1998). Toward understanding the assembly and structure of K_{ATP} channels. *Physiol. Rev.*, **78**, 227–245.

ASHCROFT, F.M. & GRIBBLE, F.M. (1998). Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci., 21, 288-294.

BAUER, C.K. & SCHWARTZ, J.R. (2001). Physiology of EAG channels. J. Membr. Biol., 182, 1-15.

BEZANILLA, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiol. Rev., 80, 555-592.

CHANDY, K.G. & GUTMAN, G.A. (1995). Voltage-gated potassium channel genes. In: *Handbook of Receptors and Channels; Ligand and Voltage-gated Ion Channels*. ed. North, R.A. pp. 1–71. Boca Raton, FL: CRC Press.

COETZEE, W.A. et al. (1999). Molecular diversity of K+ channels. Ann. N.Y. Acad. Sci., 868, 233-285.

GOLDSTEIN, S.A.N., BOCKENHAUER, D., O'KELLY, I. & ZILBERBERG, N. (2001). Potassium leak channels and the KCNK family of two-P domain subunits. *Nat. Rev. Neurosci.*, **2**, 175–184.

GUTMAN, G.A. & CHANDY, K.G. (2002). Potassium channels. In: *The IUPHAR Compendium of Voltage-Gated Ion Channels*. eds. Catterall, W.A., Chandy, K.G. & Gutman, G.A. pp. 58–189. Leeds, IUPHAR Media.

GUTMAN, G.A. et al. (2003). International union of pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev., 55, 583-586.

JAN, L.Y. & JAN, Y.N. (1997). Voltage-gated and inwardly rectifying potassium channels. J. Physiol., 505, 267-282.

KACZOROWSKI, G.J. & GARCIA, M.L. (1999). Pharmacology of voltage-gated and calcium-activated potassium channels. Curr. Opin. Chem. Biol., 3, 448-458.

LEWIS, R.J. & GARCIA, M.L. (2003). Therapeutic potential of venom peptides. Nat. Rev. Drug Discov., 2, 790-802.

LESAGE, F. (2003). Pharmacology of neuronal background potassium channels. *Neuropharmacology*, 44, 1-7.

LESAGE, F. & LAZDUNSKI, M. (2000). Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol., 279, F793-F801.

MATHIE, A., CLARKE, C.E., RANATUNGA, K.M. & VEALE, E.L. (2003). What are the roles of the many different types of potassium channel expressed in cerebellar granule cells? *Cerebellum*, **2**, 11–25.

MILLER, C. (1995). The charybdotoxin family of K+ channel-blocking peptides. Neuron, 15, 5-10.

MILLER, C. (2003). A charged view of voltage-gated ion channels. Nat. Struct. Biol., 10, 422-424.

NICHOLS, C.G. & LOPATIN, A.N. (1997). Inwardly rectifying potassium channels. Ann. Rev. Physiol., 59, 171-191.

O'CONNELL, A.D., MORTON, M.J. & HUNTER, M. (2002). Two-pore domain K⁺ channels – molecular sensors. *Biochem. Biophys. Acta – Biomemb.*, **1566**, 152–161.

PATEL, A.J. & HONORE. E. (2001). Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci., 24, 339-346.

PONGS, O. (1995). Regulation of the activity of voltage-gated potassium channels by β -subunits. Semin. Neurosci., 7, 137–146.

REIMANN, F. & ASHCROFT, F.M. (1999). Inwardly rectifying potassium channels. Curr. Opin. Cell Biol., 11, 503-508.

ROBBINS, J. (2001). KCNQ potassium channels: physiology, pathophysiology and pharmacology. Pharmacol. Ther., 90, 1-19.

SANGUINETTI, M.C. (2000). Maximal function of minimal K+ channel subunits. Trends Pharmacol. Sci., 21, 199-201.

SANGUINETTI, M.C. & SPECTOR, P.S. (1997). Potassium channelopathies. Neuropharmacology, 36, 755-762.

SEINO, S. & MIKI, T. (2003). Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol., 81, 133-176.

STANFIELD, P.R., NAKAJIMA, S. & NAKAJIMA, Y. (2002). Constitutively active and G-protein coupled inward rectifier K + channels: Kir2.0 and Kir3.0. *Rev. Physiol.*, *Biochem. Pharmacol.*, **145**, 47–179.

VEGARA, C., LATORRE, R., MARRION, N.V. & ADELMAN, J.P. (1998). Calcium-activated potassium channels. Curr. Opin. Neurobiol., 8, 321-329.

YAMADA, M., INANOBE, A. & KURACHI, Y. (1998). G Protein regulation of potassium ion channels. Pharmacol. Rev., 50, 723-757.

YELLEN, G. (2002). The voltage-gated potassium channels and their relatives. Nature, 419, 35-42.

References

SANO, Y. et al. (2003). J. Biol. Chem., 278, 27406-27412.

Ryanodine receptor channels

Overview: The ryanodine receptors (RyRs) are found on intracellular Ca²⁺ storage/release organelles. The family of RyR genes encodes three highly related Ca²⁺ release channels: RyR1, RyR2 and RyR3, which assemble as large tetrameric structures. These RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca²⁺ signaling phenomena (neurotransmission, secretion, etc.). In addition to the three mammalian isoforms described below, various non-mammalian isoforms of the ryanodine receptor have been identified and these are discussed in Sutko & Airey (1996). The function of the ryanodine receptor channels may also be influenced by closely associated proteins such as the tacrolimus (FK506) binding protein, calmodulin (Yamaguchi et al., 2003), triadin, calsequestrin, junctin and sorcin and by protein kinases and phosphatases.

Nomenclature	RyR1	RyR2	RyR3
Ensembl ID	ENSG00000066598	ENSG00000133014	ENSG00000069895
Endogenous	Depolarisation via DHP receptor,	Cytosolic Ca ²⁺ (μM),	Cytosolic Ca ²⁺ (μM),
activators	cytosolic Ca ²⁺ (µM), cytosolic ATP (mM),	cytosolic ATP (mm), luminal Ca2+,	cytosolic ATP (mM),
	luminal Ca ²⁺ , calmodulin at low cytosolic Ca ²⁺ , CaM kinase, PKA	CaM Kinase, PKA	calmodulin at low cytosolic Ca ²⁺
Pharmacological	Ryanodine (nM $-\mu$ M), caffeine (mM),	Ryanodine (nM- μ M), caffeine (mM),	Ryanodine $(nM - \mu M)$,
activators	suramin (μM)	suramin (μM)	caffeine (mM)
Antagonists	Cytosolic $Ca^{2+}(>100 \mu\text{M})$,	Cytosolic $Ca^{2+}(>1 \text{ mM})$,	Cytosolic $Ca^{2+}(>1 \text{ mM})$,
	cytosolic Mg2+ (mM), calmodulin at	cytosolic Mg2+ (mM), calmodulin	cytosolic Mg ²⁺ (mM),
	high cytosolic Ca ²⁺ , dantrolene	at high cytosolic Ca ²⁺	calmodulin at high cytosolic Ca2+,
			dantrolene
Channel blockers	Ryanodine (> $100 \mu\text{M}$), ruthenium red, procaine	Ryanodine (> $100 \mu M$), ruthenium red, procaine	Ruthenium red
Functional	$P_{\rm Ca}/P_{\rm K} \sim 6$, single-channel conductance:	$P_{\rm Ca}/P_{\rm K} \sim 6$, single-channel	$P_{\rm Ca}/P_{\rm K} \sim 6$, single-channel
characteristics	$\sim 90 \text{ pS } (50 \text{ mM } \text{Ca}^{2+}), 770 \text{ pS } (200 \text{ mM } \text{K}^+)$	conductance: $\sim 90 \text{ pS } (50 \text{ mM Ca}^{2+})$, 720 pS (210 mM K ⁺)	conductance: ~140 pS (250 mM Ca ²⁺), 777 pS (250 mM K ⁺)

The modulators of channel function included in this table are those most commonly used to identify ryanodine-sensitive Ca^{2+} release pathways. Numerous other modulators of ryanodine receptor/channel function can be found in the reviews listed below. The absence of a modulator of a particular isoform of receptor indicates that the action of that modulator has not been determined, not that it is without effect. The potential role of cyclic ADP ribose as an endogenous regulator of ryanodine receptor channels is controversial (see Sitsapesan et al., 1995). A region of RyR likely to be involved in ion translocation and selection has been identified (Zhao et al., 1999; Gao et al., 2000). RyR channel-mediated elementary Ca²⁺ release events may be monitored in intact, Fluo-3 loaded, cells using confocal imaging (see Cannell & Soeller, 1998).

Further Reading:

BERRIDGE, M.J., LIPP, P. & BOOTMAN, M.D. (2000). The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol., 1, 11-21.

BOUCHARD, R., PATTARINI, R. & GEIGER, J.D. (2003). Presence and functional significance of presynaptic ryanodine receptors. Prog. Neurobiol., 69,

CANNELL, M.B. & SOELLER, C. (1998). Sparks of interest in cardiac excitation-contraction coupling. Trends Pharmacol. Sci., 19, 16-20.

EHRLICH, B.E. (1995). Function properties of intracellular calcium release channels. Curr. Opin. Neurobiol., 5, 304-309.

FILL, M. & COPELLO, J.A. (2002). Ryanodine receptor calcium release channels. Physiol. Rev., 82, 893-922.

ROSS, D. & SORRENTINO, V. (2002). Molecular genetics of ryanodine receptors Ca²⁺ release channels. *Cell Calcium*, 32, 307–319.

SHOSHAN-BARMATZ, V. & ASHLEY, R.H. (1998). The structure, function and cellular regulation of ryanodine-sensitive Ca²⁺-release channels. Int. Rev. Cytol., **183**, 185-270.

SITSAPESAN, R., MCGARRY, S.J. & WILLIAMS, A.J. (1995). Cyclic ADP-ribose, the ryanodine receptor and Ca²⁺ release. Trends Pharmacol. Sci., 16, 386 - 391.

SITSAPESAN, R. & WILLIAMS, A.J. eds. (1998). The structure and function of ryanodine receptors. Imperial College Press.

SUTKO, J.L. & AIREY, J.A. (1996). Ryanodine Ca²⁺ release channels: does diversity in form equal diversity in function? *Physiol. Rev.*, 76, 1027–1071.

SUTKO, J.L., AIREY, J.A., WELCH, W. & RUEST, L. (1997). The pharmacology of ryanodine and related compounds. Pharmac. Rev., 49, 53-98.

ZUCCHI, R. & RONCA-TESTONI, S. (1997). The sarcoplasmic reticulum Ca²⁺ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmac. Rev., 49, 1-51.

References:

GAO, L. et al. (2000). Biophys. J., 79, 828-840.

YAMAGUCHI, N. et al. (2003). J. Biol. Chem., 278, 23480-23486.

ZHAO, M.C. et al. (1999). J. Biol. Chem., 274, 25971-25974.

Sodium channels (voltage-gated)

Overview: Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one poreforming α -subunit, which may be associated with either one or two β subunits (Isom, 2001). α -Subunits consist of four homologous domains (I-IV), each containing six TM segments (S1-S6) and a pore-forming loop. The positively charged fourth TM segment (S4) acts as a voltage-sensor and is involved in channel gating. Auxiliary β 1, β 2, β 3 and now β 4 (Yu et al., 2003) subunits consist of a large extracellular N-terminal domain, a single TM segment and a shorter cytoplasmic domain.

The nomenclature for sodium channels was proposed by Goldin et al. (2000) and approved by the NC-IUPHAR subcommittee on sodium channels (Catterall et al.,

Nomenclature	Na _v 1.1	$Na_V1.2$	Na _v 1.3	Na _v 1.4	Na _v 1.5
Alternative names	Brain type I	Brain type II	Brain type III	μ 1, SkM1	h1, SkM II, cardiac
Ensembl ID	ENSG00000144285	ENSG00000136531	ENSG00000153253	ENSG00000007314	ENSG00000183873
Activators	Veratridine,	Veratridine,	Veratridine,	Veratridine,	Veratridine,
	batrachotoxin	batrachotoxin	batrachotoxin	batrachotoxin	batrachotoxin
Blockers	Tetrodotoxin (10 nm), saxitoxin	Tetrodotoxin (10 nm), saxitoxin	tetrodotoxin (2–15 nM), saxitoxin	μ -Conotoxin GIIIA, tetrodotoxin (5 nM), saxitoxin	Tetrodotoxin $(2 \mu M)$
Functional characteristic	Fast inactivation (0.7 ms)	Fast inactivation (0.8 ms)	Fast inactivation (0.8 ms)	Fast inactivation (0.6 ms)	Fast inactivation (1 ms)

Nomenclature	Na _V 1.6	Na _v 1.7	Na _V 1.8	Na _v 1.9
Alternative names	PN4, NaCH6	PN1, NaS	SNS, PN3	NaN, SNS2
Ensembl ID	ENSG00000086117	ENSG00000169432	ENSG00000185313	ENSG00000168356
Activators	Veratridine, batrachotoxin	Veratridine, batrachotoxin	_	_
Blockers	Tetrodotoxin (6 nm), saxitoxin	Tetrodotoxin (4 nm), saxitoxin	Tetrodotoxin (60 μM)	Tetrodotoxin (40 μM)
Functional characteristic	Fast inactivation (1 ms)	Fast inactivation (0.5 ms)	Slow inactivation (6 ms)	Slow inactivation (16 ms)

Sodium channels are also blocked by local anaesthetic agents, antiarrythmic drugs and antiepileptic drugs. There are two clear functional fingerprints for distinguishing different subtypes. These are sensitivity to tetrodotoxin (Nav1.5, Nav1.8 & Nav1.9 are much less sensitive to block) and rate of inactivation (Nav1.8 and particularly Na_v1.9 inactivate more slowly).

Further Reading:

BAKER, M.D. & WOOD, J.N. (2001). Involvement of Na+ channels in pain pathways. Trends Pharmacol. Sci., 22, 27-31.

CANTRELL, A.R. & CATTERALL, W.A. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat. Rev. Neurosci., 2, 397-407. CATTERALL, W.A. (1995). Structure and function of voltage-gated ion channels. Ann. Rev. Biochem., 64, 493-531.

CATTERALL W.A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 26, 13-25.

CATTERALL, W.A., GOLDIN, A.L. & WAXMAN, S.G. (2002). Voltage-gated sodium channels. In: The IUPHAR Compendium of Voltage-Gated Ion Channels. eds. Catterall, W.A., Chandy, K.G. & Gutman, G.A. pp. 9-30. Leeds, IUPHAR Media.

CATTERALL, W.A., GOLDIN, A.L. & WAXMAN, S.G. (2003). International union of pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev., 55: 575-578.

FOZZARD, H.A. & HANCK, D.A. (1996). Structure and function of voltage-dependent sodium channels - comparison of brain-II and cardiac isoforms. Physiol. Rev., 76, 887-926.

GOLDIN, A.L. (1995). Voltage-gated sodium channels. In: Handbook of Receptors and Channels; Ligand and Voltage-gated Ion Channels. ed. North, R.A. pp. 73-111. Boca Raton, FL: CRC Press

GOLDIN, A.L. (1999). Diversity of mammalian voltage-gated sodium channels. In: Molecular and Functional Diversity of Ion Channels and Receptors. eds. RUDY, B. & SEEBURG, P. Ann. N.Y. Acad. Sci., 868, 38-50.

GOLDIN, A.L. (2001). Resurgence of sodium channel research. Ann. Rev. Physiol., 63, 874-894.

GOLDIN, A.L. et al. (2000). Nomenclature of voltage-gated sodium channels. Neuron, 28, 365-368.

HUNTER, J.C. & LOUGHHEAD, D. (1999). Voltage-gated sodium channel blockers and the treatment of chronic pain. Curr. Opin. CPNS Investigation. Drugs, 1, 72 - 81.

ISOM, L.L. (2001). Sodium channel beta subunits: anything but auxiliary. Neuroscientist, 7, 42-54.

LEWIS, R.J. & GARCIA, M.L. (2003). Therapeutic potential of venom peptides. Nat. Rev. Drug Discov., 2, 790-802.

MARBAN, E., YAMAGISHI, T. & TOMASELLI, G.F. (1998). Structure and function of voltage-activated sodium channels. J. Physiol., 508, 647-659.

PLUMMER, N.W. & MEISLER, M.H. (1999). Evolution and diversity of mammalian sodium channel genes. Genomics, 57, 323-331.

RAGSDALE, D.S. & AVOLI, M. (1998). Sodium channels as molecular targets for antiepileptic drugs. Brain Res. Rev., 26, 16-28.

YU, F.H. et al. (2003). J. Neurosci., 23, 7577-7585.

Transient receptor potential (TRP) cation channels

Overview: The TRP superfamily of cation channels, whose founder member is the Drosophila Trp channel, can be divided into seven families; TRPC, TRPM, TRPN, TRPV, TRPA, TRPP and TRPML based on amino-acid homologies (see Montell et al., 2002; Clapham, 2003; Corey, 2003). TRP subunits contain six putative TM domains and probably assemble as homo- or heterotetramers to form cation-selective channels. The TRPC ('Canonical') subfamily presents seven different channels (TRPC1-TRPC7). The TRPM ('Melastatin') subfamily contains eight members TRPM1-TRPM8, but TRPM6 has not been characterised in sufficient detail to permit its inclusion within the tables. The TRPV ('Vanilloid') subfamily presently comprises six members (TRPV1-TRPV6), whereas the most recently proposed subfamily, TRPA (ANKTM1), has only one mammalian member (TRPA1; Story et al., 2003). The TRPP ('Polycystin') and TRPML ('Mucolipin') families are presently not sufficiently characterised for inclusion within the tables below. The established, or potential, physiological functions of the individual members of the TRP families are discussed in the recommended reviews. The nomenclature used here is that proposed by the TRP Nomenclature committee (see Montell et al., 2002) and presently used by NC-IUPHAR (Clapham et al., 2003).

TRPC family: Members of the TRPC subfamily, on the basis of sequence homology and similarities in function, fall into four subfamilies: TRPC1, TRPC2, TRPC3/ 6/7 and TRPC4/5. TRPC2 (not tabulated) is a pseudogene in man but, in rodents, is involved in pheromone detection by the vomeronasal organ and Ca²⁺ signalling in spermatoza (reviewed by Clapham et al., 2001). All TRPC channels have been proposed to act as store-operated channels (SOCs), activated by depletion of intracellular calcium stores (see reviews by Clapham et al., 2001; Venkatachalam et al., 2002; Vennekens et al., 2002; Nilius, 2003a). However, there is conflicting evidence that TRPC4/5 and TRPC3/6/7 can function as receptor-operated channels that are mostly insensitive to store depletion (reviewed by Plant & Schaefer, 2003; Trebak et al., 2003a). In heterologous systems, the level of TRPC expression may contribute to such discrepancies (Treback et al., 2003b). TRPC4-/- mice demonstrate an impaired store-operated calcium current in vascular endothelial cells, suggesting that this protein forms, or is an essential component of, a storeoperated Ca²⁺ channel (SOC) in vivo (Freichel et al., 2001; Tiruppathi et al., 2002). The relationship of other TRPC channels to endogenous SOCs is less clear at present, although TRPC1 and TRPC5 appear to be components of a cation channel within the CNS (Strübing et al., 2001). TRPC6 has been shown to be essential for the function of a cation channel-mediated entry of Ca^{2+} into vascular smooth muscle cells subsequent to α -adrenoceptor activation (Inoue et al., 2001).

Nomenclature	TRPC1	TRPC3	TRPC4
Other names	TRP1	TRP3	TRP4, CCE1
Ensembl ID	ENSG00000144935	ENSG00000138741	ENSG00000100991
Activators	Metabotropic glutamate receptor mGlu1,	G _{q/11} -coupled receptors,	G _{q/11} -coupled receptors, GTPγS
	OAG (weak and only in divalent-free	OAG (independent of PKC),	(requires extracellular Ca ²⁺),
	extracellular solution), PLCγ stimulation,	PLC γ stimulation, Ins(1,4,5)P ₃ ,	Ins(1,4,5)P ₃ (disputed) and thapsigargin
	intracellular Ins(1,4,5)P ₃ (disputed),	(disputed) and thapsigargin	(disputed), activated by F2v peptide and
	thapsigargin (disputed)	(disputed)	calmidazolium by antagonism of
			Ca ²⁺ -calmodulin
Blockers	Gd ³⁺ , La ³⁺ , 2-APB, SKF96365	Gd ³⁺ , La ³⁺ , 2-APB, SKF96365	La3+ (at mm concentrations – augments
			in μM range), 2-APB
Functional	$\gamma = 16 \mathrm{pS}$ (estimated by fluctuation	$\gamma = 66 \mathrm{pS}$; conducts mono- and divalent	$\gamma = 30-41$ pS, conducts mono- and
characteristics	analysis); conducts mono- and	cations nonselectively $(P_{\text{Ca}}/P_{\text{Na}}=1.6)$;	divalent cations nonselectively
	divalent cations nonselectively;	monovalent cation current suppressed	$(P_{\rm Ca}/P_{\rm Na} = 1.1 - 7.7)$; dual (inward and
	monovalent cation current	by extracellular Ca2+; dual (inward and	outward) rectification; physically
	suppressed by extracellular Ca2+;	outward) rectification; relieved of inhibition	associates via a PDZ binding domain
	nonrectifying, or mildly inwardly	by Ca2+-calmodulin by IP3 receptors,	on NHERF with
	rectifying; noninactivating; physically	IP ₃ receptor-derived peptide (F2v)	phospholipase C isoforms
	associates via Homer with IP3 receptors	and calmidazolium	

Nomenclature	TRPC5	TRPC6	TRPC7
Other names	TRP5, CCE2	TRP6	TRP7
Ensemble ID	ENSG00000072315	ENSG00000137672	ENSG00000069018
Activators	G _{q/11} -coupled receptors,	G _{q/11} -coupled receptors, AlF ₄ ,	OAG (independent of PKC),
	Ins $(1,4,5)$ P ₃ , GTP γ S	GTP γ S (but not Ins(1,4,5)P ₃),	thapsigargin (disputed)
	(potentiated by extracellular Ca ²⁺),	OAG (independent of PKC)	
	adenophostin A and thapsigargin	and inhibition of DAG lipase	
	(disputed)	with RHC80267	
Blockers	La ³⁺ (at mM concentrations – augments in μ M range), SKF96365	La ³⁺ , Gd ³⁺ , amiloride, SKF96365	La ³⁺ , SKF96365, amiloride
Functional	$\gamma = 63 \text{ pS}$; conducts mono-and divalent	$\gamma = 28 - 37 \text{ pS}$; conducts mono-	Conducts mono and divalent
characteristics	cations non-selectively $(P_{Ca}/P_{Na} = 1.8)$;	and divalent cations with a	cations with a preference for
	dual rectification (inward and outward);	preference for divalents	divalents ($P_{\text{Ca}}/P_{\text{Cs}} = 5.9$); modest
	inhibited by xestospongin C; physically	$(P_{\text{Ca}}/P_{\text{Na}}=4.5-5.0)$; dual	outward rectification (monovalent
	associates via a PDZ binding domain	rectification (inward and	cation current recorded in the
	on NHERF with phospholipase C	outward), or inward rectification,	absence of extracellular divalents);
	isoforms	enhanced by flufenamate	monovalent cation current suppressed by extracellular Ca^{2+} and Mg^{2+}

The function and regulation of heterologously expressed TRPC1 has been controversial (see Clapham et al., 2001; Beech et al., 2003). However, there is evidence that TRPC1 is a component of a SOC in situ (reviewed by Beech et al., 2003). Functional hetero-oligomers of TRPC1 and TRPC4 and TRPC1 and TRPC5 activated by receptors signalling via $G_{q/11}$ have been suggested from heterologous expression systems (Strübing et al., 2001). Recent studies suggest that TRPC1 is physically coupled to mGlu1, and that activation of the latter stimulates cation flux through TRPC1-containing channels to produce a slow e.p.s.p. in vivo (Kim et al., 2003). Association of TRPC1 with the IP₃ receptor via the adaptor protein, Homer, regulates channel activity (Yuan et al., 2003). For TRPC3, the stimulatory effect of Ins(1,4,5)P₃ on single channel activity recorded from inside-out membrane patches is blocked by the IP₃ receptor antagonists, heparin and xestospongin C. One mode of activation of TRPC3 is postulated to involve a direct association of the channel with activated IP3 receptors (reviewed by Treback et al., 2003). Gating of TRPC3 appears to involve an interaction between a sequence (termed F2r) downstream of the agonist binding N-terminal domain of the IP3 receptor with a sequence (termed C7) within the C-terminal domain of TRPC3 (Boulay et al., 1999; Kiselyov et al., 1999) Two regions (F2q and F2g) within the IP₃ receptor sequence bind to the C7 domain of TRPC3 (Boulay et al., 1999). An 18 amino-acid synthetic peptide (F2v) representing a portion of the sequence of F2q activates TRPC3 by competing with Ca²⁺-calmodulin (which inhibits TRPC3) for a site within C7 (Schaefer et al., 2002). A similar mechanism may apply to the gating of certain other members of the TRPC family (Tang et al., 2001). However, OAG also simulates TRPC3 channel activity independent of coupling to IP3 receptors (Ventakatchalam et al., 2001).

TRPM family: Members of the TRPM subfamily, on the basis of sequence homology, fall into four groups: TRPM1/3, TRPM2/8, TRPM4/5 and TRPM6/7. The properties of TRPM2 suggest that it may function as a sensor of redox status in cells (Hara et al., 2002). A spice variant of TRPM4 (i.e. TRPM4b) and TRPM5 are inherently voltage sensitive and are molecular candidates for endogenous calcium-activated cation (CAN) channels (Launey et al., 2002; Hofmann et al., 2003). In addition, TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli (Zhang et al., 2003). TRPM4 and TRPM5, unlike other TRP channels, display inherent voltage sensitivity. TRPM6 and 7 combine channel and enzymatic activities ('chanzymes') and are involved in Mg²⁺ homeostasis (Schmitz et al., 2003; Voets et al., 2003; reviewed by Montell, 2003). TRPM8 is a channel activated by cooling and pharmacological agents evoking a 'cool' sensation.

Nomenclature	TRPM1	TRPM2	TRPM3
Other names	LTRPC1, MELASTATIN	TRPC7, LTRPC2	LTRPC3
Ensembl ID	ENSG00000134160	ENSG00000142185	ENSG00000083067
Activators	Constitutively active (disputed)	Intracellular ADP ribose; β-NAD ⁺ and agents producing reactive oxygen (e.g. H ₂ O ₂) and nitrogen (e.g. GEA 3162) species (<i>via</i> elevated NAD ⁺); potentiated by arachidonic acid and, in the presence of ADP-ribose, intracellular Ca ²⁺	Constitutively active, stimulated by store depletion with thapsigargin, stimulated by cell swelling
Blockers	La^{3+}, Gd^{3+}	_	Gd^{3+}
Functional characteristics	Permeable to Ca ²⁺ and Ba ²⁺ ; downregulated by a short splice variant of TRPM1, downregulated in metastatic melanomas	γ = 52-60 pS at negative potentials; 76 pS at positive potentials; conducts mono- and divalent cations nonselectively ($P_{\rm Ca}/P_{\rm Na}$ = 0.67); nonrectifying; inactivation at negative potentials	γ = 83 pS (Na ⁺ current), 65 pS (Ca ²⁺ current); conducts monoand divalent cations nonselectively ($P_{\text{Ca}}/P_{\text{Na}}$ = 1.57); nonrectifying

Nomenclature Other names Ensembl ID Activators	TRPM4 LTRPC4 ENSG00000130529 Transiently activated by intracellular Ca ²⁺ (EC ₅₀ 320–520 nM) and subsequently inactivated; patch excision (outside-out) reverses inactivation	TRPM5 TRP-T ENSG00000070985 $G_{q/11}$ -coupled receptors, Ins(1,4,5)P ₃ , transiently activated by intracellular Ca^{2+} (EC ₅₀ 30 μ M)	TRPM6 — ENSG00000119121 Constitutively active
Blockers	_	_	Ruthenium red (voltage-dependent block, $IC_{50} = 100 \text{ nM at } -120 \text{ mV}$)
Functional characteristics	γ = 25 pS (within the range 60 to +60 mV); permeable to monovalent cations; impermeable to Ca ²⁺ ; outward rectification; slow activation at positive potentials, rapid inactivation at negative potentials; intrinsically voltage sensitive	γ = 23 (at +60 mV); conducts monovalent cations selectively ($P_{\rm Ca}/P_{\rm Na}$ = 0.05); outward rectification; slow activation at positive potentials, rapid inactivation at negative potentials; intrisically voltage sensitive	Permeable to mono- and divalent cations with a preference for divalents $(Mg^{2+} > Ca^{2+})$, strong outward rectification abolished by removal of extracellular divalents, inhibited by intracellular Mg^{2+}

Nomenclature	TRPM7	TRPM8
Other names	TRP-PLIK, Chak1, MagNum, MIC	CMR1, TRP-p8
Ensembl ID	ENSG00000092439	ENSG000000144481
Activators	Potentiated by intracellular ATP	Cooling ($<22-26$ °C), icilin (requires the presence of extracellular Ca^{2+}), menthol (temperature dependent, potentiated by cooling)
Blockers	Spermine (permeant blocker), La ³⁺	Insensitive to ruthenium red
Functional characteristics	$\gamma\!=\!105\mathrm{pS}$ at positive potentials; conducts mono-and divalent cations with a preference for monovalents ($P_{\mathrm{Ca}}/P_{\mathrm{Na}}\!=\!0.34$); conducts trace elements; outward rectification, decreased by removal of extracellular divalent cations; inhibited by intracellular $\mathrm{Mg^{2^+}},\mathrm{Ba^{2^+}},\mathrm{Sr^+},\mathrm{Zn^{2^+}}$ and $\mathrm{Mn^{2^+}},\mathrm{inhibited}$ by Mg.ATP and hydrolysis of $\mathrm{PtdIns}(4,5)P_2$	γ = 83 pS at positive potentials; conducts mono- and divalent cations nonselectively ($P_{\rm Ca}/P_{\rm Na}$ = 1.0–3.3); pronounced outward rectification; demonstrates densensitization to chemical agonists and adaptation to a cold stimulus

TRPM2 possesses an ADP ribose hydrolase activity associated with a NUDT9 motif within an extended intracellular C-terminal domain of the channel (Perraud et al., 2001). Deletion of this domain abolishes activation by H₂O₂ (Hara et al., 2002). A truncated TRPM2 isoform (TRPM2-S) generated by alternative splicing prevents activation of the full-length protein (TRPM2-L) by H₂O₂ when coexpressed with the latter (Zhang et al., 2003). TRPM4 exists as two splice variants, TRPM4a and a longer protein TRPM4b (Launey et al., 2002) containing an additional 174 amino acids N-terminal to the predicted start of TRPM4a. Data listed are for TRPM4b. Fura2A ratiometric imaging suggests that Ca2+ and Ba2+ permeate TRPM4a in addition to monovalent cations. TRPM7 embodies an atypical serine/ threonine protein kinase within its C-terminal domain and is subject to autophosphorylation (Runnels et al., 2001; Schmitz et al., 2003). Intact kinase activity of TRPM7 has been claimed to be required for channel function (Runnells et al., 2001) although this is disputed (Nadler et al., 2001; Schmitz et al., 2003). The kinase activity of TRPM7 modulates sensitivity to inhibition by Mg²⁺ (Schmitz et al., 2003).

TRPA family: The TRPA family currently comprises one mammalian member, TRPA1, which is activated by noxious cold (Story et al., 2003).

TRPA1 Nomenclature ANKTM1, p120, TRPN1 Other names Ensembl ID ENSG00000104321 Cooling (<17°C), icilin (insensitive to menthol and capsaicin) Activators Blockers Ruthenium red (IC₅₀ < 1 μ M) Conducts mono- and divalent cations nonselectively ($P_{\text{Ca}}/P_{\text{Na}} = 0.84$); outward rectification; inactivates in response to prolonged cooling Functional characteristics

TRPV family: Members of the TRPV family (reviewed by Gunthorpe et al., 2002), on the basis of structure and function, comprise four groups: TRPV1/2, TRPV3, TRPV4 and TRPV5/6. TRPV1-4 are thermosensitive, nonselective cation channels that, in the case of TRPV1 and TRPV4, can also be activated by numerous additional stimuli (reviewed by Benham et al., 2003, Nilius et al., 2004). Members of the TRPV family function as tetrameric complexes. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by den Dekker et al., 2003; Nijenhuis et al., 2003).

NT 1.4	TDDW/4	TDD1/4	TDDV2
Nomenclature	TRPV1	TRPV2	TRPV3
Other names	VR1, vanilloid/capsaicin receptor,	VRL-1, OTRPC2, GRC	_
	OTRPC1	T3.75.500004.540.50	T3 17 C 0 0 0 0 0 1 1 T 1 T 1 T 1 T 1 T 1 T 1 T
Ensembl ID	ENSG00000043316	ENSG00000154039	ENSG00000167723
Activators	Noxious heat (>43°C at pH 7.4),	Noxious heat (>53°C)	Heat (23°-39°C, temperature threshold
	extracellular protons (pEC ₅₀ = 5.4 at		influenced by 'thermal history' of the
	37°C), capsaicin, resiniferatoxin,		cell)
	olvanil, anandamide, some eicosanoids		
	(e.g.12-(S)-HPETE, 15-(S)-HPETE,		
	5-(S)-HETE, leukotriene B ₄),		
	N-arachidonoyl-dopamine		
Blockers	Ruthenium red, iodoresiniferatoxin,	Ruthenium red (IC ₅₀ = $0.6 \mu M$);	Ruthenium red (IC ₅₀ < 1 μ M)
	SB366791, capsazepine, DD161515,	SKF96365; La ³⁺	
	DD191515		
Functional	$\gamma = 35 \text{ pS at } -60 \text{ mV}; 77 \text{ pS at}$	Conducts mono- and divalent	$\gamma = 197 \text{pS} \text{at} = +40 \text{to} +80 \text{mV}, 48 \text{pS}$
characteristics	+60 mV, conducts mono- and	cations $(P_{\text{Ca}}/P_{\text{Na}} = 0.9 - 2.9)$; dual	at negative potentials; conducts mono-
	divalent cations with a selectivity for	(inward and outward) rectification;	and divalent cations; outward
	divalents ($P_{\text{Ca}}/P_{\text{Na}} = 9.6$); voltage- and	current increases upon repetitive	rectification
	time- dependent outward rectification;	activation by heat; translocates to	
	potentiated by ethanol; activated/	cell surface in response to IGF-1 to	
	potentiated by PKC stimulation;	induce a constitutively active	
	extracellular acidification facilitates	conductance	
	activation by PKC; desensitisation		
	inhibited by PKA; inhibited by		
	PtdIns(4,5)P ₂ ; cooling reduces		
	vanilloid-evoked currents		

Nomenclature Other names Ensembl ID Activators	TRPV4 VRL-2, OTRPC4, VR-OAC, TRP12 ENSG00000111199 Constitutively active, heat (> 24–32°C), cell swelling (not membrane stretch or reduced internal ionic strength), responses to heat increased in hypo-osmotic solutions and vice versa, 4x-PDD, PMA, 5',6'-epoxyeicosatrieonic acid	TRPV5 ECaC, ECaC1, CaT2, OTRPC3 ENSG00000127412 Constitutively active (with strong buffering of intracellular Ca ²⁺)	TRPV6 ECaC2, CaT1, CaT-L ENSG00000165125 Constitutively active (with strong buffering of intracellular Ca ²⁺), potentiated by 2-APB
Blockers	Ruthenium red (voltage-dependent block), La ³⁺ , Gd ³⁺	Ruthenium red (IC ₅₀ =121 nM), econazole, miconazole, Pb ²⁺ = Cu ²⁺ = Gd ³⁺ > Cd ²⁺ > Zn ²⁺ > La ³⁺ > Co ²⁺ > Fe ²⁺ ; Mg ²⁺	Ruthenium red (IC ₅₀ =9 μ M), Cd ²⁺ , Mg ²⁺ , La ³⁺
Functional characteristics	γ = \sim 60 pS at -60 mV, \sim 90 -100 pS at $+60$ mV; conducts mono- and divalent cations with a preference for divalents ($P_{\text{Ca}}/P_{\text{Na}} = 6 - 10$); dual (inward and outward) rectification, potentiated by intracellular Ca ²⁺ <i>via</i> Ca ²⁺ /calmodulin; inhibited by elevated intracellular Ca ²⁺ <i>via</i> an unknown mechanism (IC ₅₀ = 0.4 μ M)	γ = 65 – 78 pS for monovalent ions at negative potentials, conducts monoand divalents with high selectivity for divalents ($P_{\rm Ca}/P_{\rm Na}$ > 107); voltage- and time- dependent inward rectification; inhibited by intracellular Ca ²⁺ promoting fast inactivation and slow downregulation; inhibited by extracellular acidosis, regulated by vitamin D	γ = 58 – 79 pS for monovalent ions at negative potentials, conducts monoand divalents with high selectivity for divalents ($P_{\rm Ca}/P_{\rm Na}$ > 130); voltage- and time-dependent inward rectification; inhibited by intracellular ${\rm Ca^{2+}}$ promoting fast and slow inactivation; gated by voltage-dependent channel blockade by intracellular ${\rm Mg^{2+}}$; slow inactivation due to ${\rm Ca^{2+}}$ -dependent calmodulin binding; phosphorylation by PKC inhibits ${\rm Ca^{2+}}$ -calmodulin binding and slow inactivation

Capsaicin, resiniferatoxin and olvanil are exogenous agonists of TRPV1 that possess a vanilloid group. The receptor is also activated by compounds lacking a vanilloid moiety (see Sterner and Szallasi, 1999) and by novel analogues of capsaicin (e.g. SDZ249665) that lack pungency. Blockade of TRPV1 by capsazepine and SB366791 is competitive; all other antagonists listed act by non- or uncompetitive antagonism. [3 H]-Resiniferatoxin and [125 I]-iodoresiniferatoxin are radioligands for TRPV1. Capsaicin, resiniferatoxin or low extracellular pH (4.0–5.0) do not activate TRPV2 or TRPV3. TRPV3 can coassemble with TRPV1 to form a functional hetero-oligomer. The sensitivity of TRPV4 to heat, but not 4α -PDD, is lost upon patch excision. TRPV4 is activated by anandamide and arachidonic acid following P450 epoxygenase-dependent metabolism to 5',6'-epoxyeicosatrienoic acid (reviewed by Nilius *et al.*, 2004). TRPV5 preferentially conducts Ca^{2+} under physiological conditions, but in the absence of extracellular Ca^{2+} , conducts monovalent cations. Single channel conductances listed for TRPV5 and TRPV6 were determined in divalent cation-free extracellular solution. Ca^{2+} -induced inactivation occurs at hyperpolarized potentials when Ca^{2+} is present extracellularly. Single channel events cannot be resolved (probably due to greatly reduced conductance) in the presence of extracellular divalent cations. Measurements of P_{Ca}/P_{Na} for TRPV5 and TRPV6 are dependent upon ionic conditions due to anomalous mole fraction behaviour. Blockade of TRPV5 and TRPV6 by extracellular Mg^{2+} is voltage-dependent block that is alleviated by hyperpolarisation and contributes to the time-dependent activation and deactivation of TRPV6-mediated monovalent cation currents. TRPV5 and TRPV6 differ in their kinetics of Ca^{2+} -dependent inactivation and recovery from inactivation. TRPV5 and TRPV6 function as homo- and heterotetramers.

Abbreviations: 2-APB, 2-amino ethoxyphenylborate; DD161515, N-[2-(2-(N-methylpyrrolidinyl)ethyl)glycyl]-[N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinanmide; DD191515, N-[3-(N-N-diethylamino)propyl]glycyl]-N-[2,4-dichlorophenethyl]glycyl]-N-(2,4-dichlorophenethyl)glycinanmide, GEA3162, 1,2,3,4-oxatriazolium-5-amino-3-(3,4-dichlorophenyl)-chloride; OAG, 1-oleoyl-2-acetyl-N-glycerol; PMA, phorbol 12 myristate 13-acetate; RHC80267, 1,6-di[O-(carbamoyl)cyclohexanone oxime]hexane; SB366791, N-(3-methoxyphenyl)-4-chlorocinnamide; SDZ249665, 1-[4-(2-amino-ethoxy)-3-methoxy-benzyl]-3-(4-tertbutyl-benzyl)-urea; SKF96265, 1-(N-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenethyl)-1H-imidazole hydrochloride; N-phorbol 12,13-didecanoate; 12-(N-HPETE and 15-(N-HPETE, 12- and 15-(N-hydroperoxyeicosatetraenoic acids; 5-(N-hydroeicosatetraenoic acid

Further Reading:

BEECH, D.J., XU, S.Z., MCHUGH, D. & FLEMMING, R. (2003). TRPC1 store-operated cationic channel subunit. Cell Calcium, 33, 433-440.

BENHAM, C.D., GUNTHORPE, M.J. & DAVIS, J.B. (2003). TRPV channels as temperature sensors. Cell Calcium, 33, 479-487.

CATERINA, M.J. & JULIUS, D. (2001). The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci., 24, 487-517.

CLAPHAM, D.E. (2003). TRP channels as cellular sensors. Nature, 426, 517-524.

CLAPHAM, D.E., MONTELL, C., SCHULTZ, G. & JULIUS, D. (2003). International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels. Transient receptor potential channels. *Pharmacol. Rev.*, **55**, 591–596.

CLAPHAM, D.E., RUNNELS, L.W. & STRÜBING, C. (2001). The TRP ion channel family. Nat. Rev. Neurosci., 2, 387-396.

COREY, D.P. (2003). New TRP channels in hearing and mechanosensation. Neuron, 39, 585-588.

DEN DEKKER, E., HOENDEROP, J.G., NILIUS, B. & BINDELS, R.J. (2003). The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. *Cell Calcium*, 33, 497–507.

DIMARZO, V., BLUMBERG, P.M. & SZALLASI, A. (2002). Endovanilloid signalling in pain. Curr. Opin. Neurobiol., 12, 372-379.

GUNTHORPE, M.J., BENHAM, C.D., RANDALL, A. & DAVIS, J. (2002). The diversity in the vanilloid (TRPV) receptor family of ion channels. *Trends Pharmacol. Sci.*, 23, 183–191.

JORDT, S.E., MCKEMY, D.D. & JULIUS, D. (2003). Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol., 13, 487–92

MONTELL, C. (2003). Mg²⁺ homeostasis: the Mg²⁺ nificent TRPM chanzymes. Curr. Biol., 13, R799-R801.

MONTELL, C., BIRNBAUMER, L., FLOCKERZI, V., BINDELS, R.J., BRUFORD, E.A., CATERINA, M.J., CLAPHAM, D.E., HARTENECK, C., HELLER, S., JULIUS, D., KOJIMA, I., MORI, Y., PENNER, R., PRAWITT, D., SCHARENBERG, A.M., SCHULTZ, G., SHIMIZU, N. & ZHU, M.X. (2002). A unified nomenclature for the superfamily of TRP cation channels. *Mol. Cell*, 9, 229–231.

NIJENHUIS, T., HOENDEROP, J.G., NILIUS, B. & BINDELS, R.J. (2003). (Patho)physiological implications of the novel epithelial Ca²⁺ channels TRPV5 and TRPV6. *Pflugers Arch.*, **446**, 401–409.

NILIUS, B. (2003a). From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium, 33, 293-298.

NILIUS, B. (2003b). Calcium-impermeable monovalent cation channels: a TRP connection? Br. J. Pharmacol., 138, 5-7.

NILIUS, B., DROOGMANS, G. & WONDERGEM, R. (2003). Transient receptor potential channels in endothelium: solving the calcium entry puzzle? *Endothelium*, **10**, 5–15.

NILIUS, B., VRIENS, J., PRENEN, J., DROOGMANS, G. & VOETS, T. (2004). TRPV4 calcium channel: a paradigm for gating diversity. *Am J. Physiol.*, **286** C195–C205.

PLANT, T.D. & SCHAEFER, M. (2003). TRPC4 and TRPC5: receptor-operated Ca2+-permeable non-selective cation channels. Cell Calcium, 33, 441-450.

STERNER, O. & SZALLASI, A. (1999). Novel natural vanilloid receptor agonists: new therapeutic targets for drug development. *Trends Pharmacol. Sci.*, 20, 459–465.

SZALLASI, A. & BLUMBERG, P.M. (1999). Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev., 51, 159-211.

SZALLASI, A. & DI MARZO, V. (2000). New perspectives on enigmatic vanilloid receptors. Trends Neurosci., 23, 491-497.

TREBAK, M., VAZQEUZ, G., BIRD, G. & PUTNEY, J.W. (2003a). The TRPC3/6/7 subfamily of cation channels. Cell Calcium, 33, 451-461.

VENNEKENS, R., DROOGMANS, G. & NILIUS, B. (2001). Function properties of the epithelial Ca²⁺ channel, ECaC. Gen. Physiol. Biophys., 20, 239-253.

VENNEKENS, R., VOETS, T., BINDELS, R.J., DROOGMANS, G. & NILIUS, B. (2002). Current understanding of mammalian TRP homologues. *Cell Calcium*, 31, 253–264

VENTAKATACHALAM, K., VAN ROSSUM, D.B., PATTERSON, R.L., MA, H.-T. & GILL, D.L. (2002). The cellular and molecular basis of store-operated calcium entry. *Nat. Cell Biol.*, **4**, E263–E272.

VOETS, T. & NILIUS, B. (2003). TRPs make sense. J. Membr. Biol., 192, 1-8.

ZITT, C., HALASZOVICH, C.R. & LUCKHOFF, A. (2002) The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. *Prog. Neurobiol.*, **66**, 243–264.

References:

BOULAY, G. et al. (1999). Proc. Natl. Acad. Sci. U.S.A., 96, 14955-14960.

FREICHEL, M. et al. (2001). Nat. Cell Biol., 3, 121–127.

HARA, T. et al. (2002). Mol. Cell, 9, 163-173.

HOFMANN, T. et al. (2003). Curr. Biol., 13, 1153-1158.

INOUE, R. et al. (2001). Circ. Res., 88, 325-332.

KIM, S.J. et al. (2003). Nature, 426, 285-291.

KISELYOV, K. et al. (1999). Mol. Cell, 4, 423-429.

LAUNAY, P. et al. (2002). Cell, 109, 397-407.

NADLER, M.J.S. et al. (2001). Nature, 411, 590-595.

PERRAUD, A.L. et al. (2001). Nature, 411, 595-599.

RUNNELS, L.W. et al. (2001). Science, 291, 1043-1047.

SCHAEFER, M. et al. (2002). J. Biol. Chem., 277, 3752-3759.

SCHMITZ, C. et al. (2003). Cell, 114, 191-200.

SMITH, G.D. et al. (2002). Nature, 418, 186-190.

STORY, G.M. et al. (2003). Cell, 112, 819-829.

STRÜBING, C. et al. (2001). Neuron, 29, 645-655.

TANG, J. et al. (2001). J. Biol. Chem., 276, 21303-21310.

TIRUPPATHI, C. et al. (2002). Circ. Res., 91, 70-76.

TREBAK, M. et al. (2003b). J. Biol. Chem., 278, 16244-16252.

URBAN, L. et al. (2000). Pain, 89, 65-74.

VENTAKATCHALAM, K. et al. (2001). J. Biol. Chem., 276, 33980-33985.

VOETS, T. et al. (2004). J. Biol. Chem., 279, 19-25.

YUAN, J.P. et al. (2003). Cell, 114, 777-789.

ZHANG, Y. et al. (2003). Cell, 112, 293-301.